Extensions 1→N→G→Q→1 with N=Q8xC12 and Q=C2

Direct product G=NxQ with N=Q8xC12 and Q=C2
dρLabelID
Q8xC2xC12192Q8xC2xC12192,1405

Semidirect products G=N:Q with N=Q8xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC12):1C2 = C4xQ8:2S3φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):1C2192,584
(Q8xC12):2C2 = C42.56D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):2C2192,585
(Q8xC12):3C2 = Q8:2D12φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):3C2192,586
(Q8xC12):4C2 = Q8.6D12φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):4C2192,587
(Q8xC12):5C2 = C42.122D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):5C2192,1127
(Q8xC12):6C2 = C4xS3xQ8φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):6C2192,1130
(Q8xC12):7C2 = C42.125D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):7C2192,1131
(Q8xC12):8C2 = C4xQ8:3S3φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):8C2192,1132
(Q8xC12):9C2 = C42.126D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):9C2192,1133
(Q8xC12):10C2 = Q8xD12φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):10C2192,1134
(Q8xC12):11C2 = Q8:6D12φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):11C2192,1135
(Q8xC12):12C2 = Q8:7D12φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):12C2192,1136
(Q8xC12):13C2 = C42.232D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):13C2192,1137
(Q8xC12):14C2 = D12:10Q8φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):14C2192,1138
(Q8xC12):15C2 = C42.131D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):15C2192,1139
(Q8xC12):16C2 = C42.132D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):16C2192,1140
(Q8xC12):17C2 = C42.133D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):17C2192,1141
(Q8xC12):18C2 = C42.134D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):18C2192,1142
(Q8xC12):19C2 = C42.135D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):19C2192,1143
(Q8xC12):20C2 = C42.136D6φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):20C2192,1144
(Q8xC12):21C2 = C12xSD16φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):21C2192,871
(Q8xC12):22C2 = C3xSD16:C4φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):22C2192,873
(Q8xC12):23C2 = C3xC4:SD16φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):23C2192,893
(Q8xC12):24C2 = C3xQ8.D4φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):24C2192,897
(Q8xC12):25C2 = C3xC23.32C23φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):25C2192,1408
(Q8xC12):26C2 = C3xC23.33C23φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):26C2192,1409
(Q8xC12):27C2 = C3xC23.36C23φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):27C2192,1418
(Q8xC12):28C2 = C3xC23.37C23φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):28C2192,1422
(Q8xC12):29C2 = C3xC22.35C24φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):29C2192,1430
(Q8xC12):30C2 = C3xC22.36C24φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):30C2192,1431
(Q8xC12):31C2 = C3xQ8:5D4φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):31C2192,1437
(Q8xC12):32C2 = C3xD4xQ8φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):32C2192,1438
(Q8xC12):33C2 = C3xQ8:6D4φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):33C2192,1439
(Q8xC12):34C2 = C3xC22.46C24φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):34C2192,1441
(Q8xC12):35C2 = C3xD4:3Q8φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):35C2192,1443
(Q8xC12):36C2 = C3xC22.50C24φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):36C2192,1445
(Q8xC12):37C2 = C3xC22.53C24φ: C2/C1C2 ⊆ Out Q8xC1296(Q8xC12):37C2192,1448
(Q8xC12):38C2 = C12xC4oD4φ: trivial image96(Q8xC12):38C2192,1406

Non-split extensions G=N.Q with N=Q8xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC12).1C2 = C12.26Q16φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).1C2192,94
(Q8xC12).2C2 = Q8:4Dic6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).2C2192,579
(Q8xC12).3C2 = Q8:5Dic6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).3C2192,580
(Q8xC12).4C2 = Q8.5Dic6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).4C2192,581
(Q8xC12).5C2 = Q8xC3:C8φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).5C2192,582
(Q8xC12).6C2 = C42.210D6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).6C2192,583
(Q8xC12).7C2 = C4xC3:Q16φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).7C2192,588
(Q8xC12).8C2 = C42.59D6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).8C2192,589
(Q8xC12).9C2 = C12:7Q16φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).9C2192,590
(Q8xC12).10C2 = Q8xDic6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).10C2192,1125
(Q8xC12).11C2 = Dic6:10Q8φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).11C2192,1126
(Q8xC12).12C2 = Q8:6Dic6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).12C2192,1128
(Q8xC12).13C2 = Q8:7Dic6φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).13C2192,1129
(Q8xC12).14C2 = C3xQ8:C8φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).14C2192,132
(Q8xC12).15C2 = C12xQ16φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).15C2192,872
(Q8xC12).16C2 = C3xQ16:C4φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).16C2192,874
(Q8xC12).17C2 = C3xC8:4Q8φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).17C2192,879
(Q8xC12).18C2 = C3xC4:2Q16φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).18C2192,895
(Q8xC12).19C2 = C3xQ8:Q8φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).19C2192,908
(Q8xC12).20C2 = C3xC4.Q16φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).20C2192,910
(Q8xC12).21C2 = C3xQ8.Q8φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).21C2192,912
(Q8xC12).22C2 = C3xQ8:3Q8φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).22C2192,1446
(Q8xC12).23C2 = C3xQ82φ: C2/C1C2 ⊆ Out Q8xC12192(Q8xC12).23C2192,1447
(Q8xC12).24C2 = Q8xC24φ: trivial image192(Q8xC12).24C2192,878

׿
x
:
Z
F
o
wr
Q
<