Extensions 1→N→G→Q→1 with N=C2 and Q=C4xDic6

Direct product G=NxQ with N=C2 and Q=C4xDic6
dρLabelID
C2xC4xDic6192C2xC4xDic6192,1026


Non-split extensions G=N.Q with N=C2 and Q=C4xDic6
extensionφ:Q→Aut NdρLabelID
C2.1(C4xDic6) = C8xDic6central extension (φ=1)192C2.1(C4xDic6)192,237
C2.2(C4xDic6) = C4xDic3:C4central extension (φ=1)192C2.2(C4xDic6)192,490
C2.3(C4xDic6) = C4xC4:Dic3central extension (φ=1)192C2.3(C4xDic6)192,493
C2.4(C4xDic6) = (C2xC12):Q8central stem extension (φ=1)192C2.4(C4xDic6)192,205
C2.5(C4xDic6) = C6.(C4xQ8)central stem extension (φ=1)192C2.5(C4xDic6)192,206
C2.6(C4xDic6) = C2.(C4xDic6)central stem extension (φ=1)192C2.6(C4xDic6)192,213
C2.7(C4xDic6) = Dic3:C4:C4central stem extension (φ=1)192C2.7(C4xDic6)192,214
C2.8(C4xDic6) = C24:12Q8central stem extension (φ=1)192C2.8(C4xDic6)192,238
C2.9(C4xDic6) = C24:Q8central stem extension (φ=1)192C2.9(C4xDic6)192,260
C2.10(C4xDic6) = C12:4(C4:C4)central stem extension (φ=1)192C2.10(C4xDic6)192,487
C2.11(C4xDic6) = (C2xDic6):7C4central stem extension (φ=1)192C2.11(C4xDic6)192,488
C2.12(C4xDic6) = (C2xC42).6S3central stem extension (φ=1)192C2.12(C4xDic6)192,492

׿
x
:
Z
F
o
wr
Q
<