Copied to
clipboard

G = C2xC4:S4order 192 = 26·3

Direct product of C2 and C4:S4

direct product, non-abelian, soluble, monomial

Aliases: C2xC4:S4, C23:2D12, C24.9D6, C4:2(C2xS4), (C2xC4):2S4, A4:1(C2xD4), (C2xA4):1D4, C22:(C2xD12), (C23xC4):3S3, (C22xC4):3D6, (C4xA4):2C22, (C2xS4):1C22, (C22xS4):1C2, C2.4(C22xS4), (C2xA4).3C23, C22.24(C2xS4), C23.3(C22xS3), (C22xA4).10C22, (C2xC4xA4):3C2, SmallGroup(192,1470)

Series: Derived Chief Lower central Upper central

C1C22C2xA4 — C2xC4:S4
C1C22A4C2xA4C2xS4C22xS4 — C2xC4:S4
A4C2xA4 — C2xC4:S4
C1C22C2xC4

Generators and relations for C2xC4:S4
 G = < a,b,c,d,e,f | a2=b4=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 998 in 233 conjugacy classes, 35 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, D4, C23, C23, C23, C12, A4, D6, C2xC6, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C24, C24, D12, C2xC12, S4, C2xA4, C2xA4, C22xS3, C2xC22:C4, C2xC4:C4, C4:D4, C23xC4, C22xD4, C4xA4, C2xD12, C2xS4, C2xS4, C22xA4, C2xC4:D4, C4:S4, C2xC4xA4, C22xS4, C2xC4:S4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, S4, C22xS3, C2xD12, C2xS4, C4:S4, C22xS4, C2xC4:S4

Character table of C2xC4:S4

 class 12A2B2C2D2E2F2G2H2I2J2K34A4B4C4D4E4F4G4H6A6B6C12A12B12C12D
 size 111133331212121282266121212128888888
ρ11111111111111111111111111111    trivial
ρ211111111-1-1-1-111111-1-1-1-11111111    linear of order 2
ρ311-1-1-1-11111-1-11-111-111-1-11-1-111-1-1    linear of order 2
ρ411-1-1-1-111-1-1111-111-1-1-1111-1-111-1-1    linear of order 2
ρ5111111111-11-11-1-1-1-11-11-1111-1-1-1-1    linear of order 2
ρ611111111-11-111-1-1-1-1-11-11111-1-1-1-1    linear of order 2
ρ711-1-1-1-1111-1-1111-1-111-1-111-1-1-1-111    linear of order 2
ρ811-1-1-1-111-111-111-1-11-111-11-1-1-1-111    linear of order 2
ρ922-2-2-2-2220000-1-222-20000-111-1-111    orthogonal lifted from D6
ρ10222222220000-1-2-2-2-20000-1-1-11111    orthogonal lifted from D6
ρ112-2-222-2-220000200000000-22-20000    orthogonal lifted from D4
ρ122-22-2-22-220000200000000-2-220000    orthogonal lifted from D4
ρ1322-2-2-2-2220000-12-2-220000-11111-1-1    orthogonal lifted from D6
ρ14222222220000-122220000-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ152-22-2-22-220000-10000000011-1-333-3    orthogonal lifted from D12
ρ162-22-2-22-220000-10000000011-13-3-33    orthogonal lifted from D12
ρ172-2-222-2-220000-1000000001-113-33-3    orthogonal lifted from D12
ρ182-2-222-2-220000-1000000001-11-33-33    orthogonal lifted from D12
ρ193333-1-1-1-11111033-1-1-1-1-1-10000000    orthogonal lifted from S4
ρ203333-1-1-1-1-1-1-1-1033-1-111110000000    orthogonal lifted from S4
ρ213333-1-1-1-1-11-110-3-3111-11-10000000    orthogonal lifted from C2xS4
ρ223333-1-1-1-11-11-10-3-311-11-110000000    orthogonal lifted from C2xS4
ρ2333-3-311-1-111-1-10-33-11-1-1110000000    orthogonal lifted from C2xS4
ρ2433-3-311-1-1-1-1110-33-1111-1-10000000    orthogonal lifted from C2xS4
ρ2533-3-311-1-1-111-103-31-11-1-110000000    orthogonal lifted from C2xS4
ρ2633-3-311-1-11-1-1103-31-1-111-10000000    orthogonal lifted from C2xS4
ρ276-66-62-22-200000000000000000000    orthogonal lifted from C4:S4
ρ286-6-66-222-200000000000000000000    orthogonal lifted from C4:S4

Permutation representations of C2xC4:S4
On 24 points - transitive group 24T394
Generators in S24
(1 8)(2 5)(3 6)(4 7)(9 16)(10 13)(11 14)(12 15)(17 24)(18 21)(19 22)(20 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 6)(2 7)(3 8)(4 5)(17 22)(18 23)(19 24)(20 21)
(9 14)(10 15)(11 16)(12 13)(17 22)(18 23)(19 24)(20 21)
(1 23 9)(2 24 10)(3 21 11)(4 22 12)(5 17 13)(6 18 14)(7 19 15)(8 20 16)
(1 6)(2 5)(3 8)(4 7)(9 18)(10 17)(11 20)(12 19)(13 24)(14 23)(15 22)(16 21)

G:=sub<Sym(24)| (1,8)(2,5)(3,6)(4,7)(9,16)(10,13)(11,14)(12,15)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6)(2,7)(3,8)(4,5)(17,22)(18,23)(19,24)(20,21), (9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21), (1,23,9)(2,24,10)(3,21,11)(4,22,12)(5,17,13)(6,18,14)(7,19,15)(8,20,16), (1,6)(2,5)(3,8)(4,7)(9,18)(10,17)(11,20)(12,19)(13,24)(14,23)(15,22)(16,21)>;

G:=Group( (1,8)(2,5)(3,6)(4,7)(9,16)(10,13)(11,14)(12,15)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6)(2,7)(3,8)(4,5)(17,22)(18,23)(19,24)(20,21), (9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21), (1,23,9)(2,24,10)(3,21,11)(4,22,12)(5,17,13)(6,18,14)(7,19,15)(8,20,16), (1,6)(2,5)(3,8)(4,7)(9,18)(10,17)(11,20)(12,19)(13,24)(14,23)(15,22)(16,21) );

G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,16),(10,13),(11,14),(12,15),(17,24),(18,21),(19,22),(20,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,6),(2,7),(3,8),(4,5),(17,22),(18,23),(19,24),(20,21)], [(9,14),(10,15),(11,16),(12,13),(17,22),(18,23),(19,24),(20,21)], [(1,23,9),(2,24,10),(3,21,11),(4,22,12),(5,17,13),(6,18,14),(7,19,15),(8,20,16)], [(1,6),(2,5),(3,8),(4,7),(9,18),(10,17),(11,20),(12,19),(13,24),(14,23),(15,22),(16,21)]])

G:=TransitiveGroup(24,394);

On 24 points - transitive group 24T419
Generators in S24
(1 23)(2 24)(3 21)(4 22)(5 15)(6 16)(7 13)(8 14)(9 18)(10 19)(11 20)(12 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3)(2 4)(5 7)(6 8)(13 15)(14 16)(21 23)(22 24)
(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 13 11)(2 14 12)(3 15 9)(4 16 10)(5 18 21)(6 19 22)(7 20 23)(8 17 24)
(1 22)(2 21)(3 24)(4 23)(5 12)(6 11)(7 10)(8 9)(13 19)(14 18)(15 17)(16 20)

G:=sub<Sym(24)| (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(2,4)(5,7)(6,8)(13,15)(14,16)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,13,11)(2,14,12)(3,15,9)(4,16,10)(5,18,21)(6,19,22)(7,20,23)(8,17,24), (1,22)(2,21)(3,24)(4,23)(5,12)(6,11)(7,10)(8,9)(13,19)(14,18)(15,17)(16,20)>;

G:=Group( (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(2,4)(5,7)(6,8)(13,15)(14,16)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,13,11)(2,14,12)(3,15,9)(4,16,10)(5,18,21)(6,19,22)(7,20,23)(8,17,24), (1,22)(2,21)(3,24)(4,23)(5,12)(6,11)(7,10)(8,9)(13,19)(14,18)(15,17)(16,20) );

G=PermutationGroup([[(1,23),(2,24),(3,21),(4,22),(5,15),(6,16),(7,13),(8,14),(9,18),(10,19),(11,20),(12,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3),(2,4),(5,7),(6,8),(13,15),(14,16),(21,23),(22,24)], [(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,13,11),(2,14,12),(3,15,9),(4,16,10),(5,18,21),(6,19,22),(7,20,23),(8,17,24)], [(1,22),(2,21),(3,24),(4,23),(5,12),(6,11),(7,10),(8,9),(13,19),(14,18),(15,17),(16,20)]])

G:=TransitiveGroup(24,419);

Matrix representation of C2xC4:S4 in GL7(F13)

12000000
01200000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0096000
0084000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
00001200
0000110
00000012
,
1000000
0100000
0010000
0001000
00001200
00000120
00001201
,
0100000
121200000
0010000
0001000
00001011
0000001
000001212
,
12000000
1100000
00120000
0031000
000012110
0000010
000001212

G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,9,8,0,0,0,0,0,6,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,12,0,0,0,0,0,12,0,0,0,0,0,0,0,1],[0,12,0,0,0,0,0,1,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,11,1,12],[12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,11,1,12,0,0,0,0,0,0,12] >;

C2xC4:S4 in GAP, Magma, Sage, TeX

C_2\times C_4\rtimes S_4
% in TeX

G:=Group("C2xC4:S4");
// GroupNames label

G:=SmallGroup(192,1470);
// by ID

G=gap.SmallGroup(192,1470);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,254,58,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of C2xC4:S4 in TeX

׿
x
:
Z
F
o
wr
Q
<