Extensions 1→N→G→Q→1 with N=C3xC36 and Q=C2

Direct product G=NxQ with N=C3xC36 and Q=C2
dρLabelID
C6xC36216C6xC36216,73

Semidirect products G=N:Q with N=C3xC36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3xC36):1C2 = S3xC36φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36):1C2216,47
(C3xC36):2C2 = C3xD36φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36):2C2216,46
(C3xC36):3C2 = C36:S3φ: C2/C1C2 ⊆ Aut C3xC36108(C3xC36):3C2216,65
(C3xC36):4C2 = C12xD9φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36):4C2216,45
(C3xC36):5C2 = C4xC9:S3φ: C2/C1C2 ⊆ Aut C3xC36108(C3xC36):5C2216,64
(C3xC36):6C2 = C9xD12φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36):6C2216,48
(C3xC36):7C2 = D4xC3xC9φ: C2/C1C2 ⊆ Aut C3xC36108(C3xC36):7C2216,76

Non-split extensions G=N.Q with N=C3xC36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3xC36).1C2 = C9xC3:C8φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36).1C2216,13
(C3xC36).2C2 = C3xDic18φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36).2C2216,43
(C3xC36).3C2 = C12.D9φ: C2/C1C2 ⊆ Aut C3xC36216(C3xC36).3C2216,63
(C3xC36).4C2 = C3xC9:C8φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36).4C2216,12
(C3xC36).5C2 = C36.S3φ: C2/C1C2 ⊆ Aut C3xC36216(C3xC36).5C2216,16
(C3xC36).6C2 = C9xDic6φ: C2/C1C2 ⊆ Aut C3xC36722(C3xC36).6C2216,44
(C3xC36).7C2 = Q8xC3xC9φ: C2/C1C2 ⊆ Aut C3xC36216(C3xC36).7C2216,79

׿
x
:
Z
F
o
wr
Q
<