Extensions 1→N→G→Q→1 with N=C3 and Q=S3xC12

Direct product G=NxQ with N=C3 and Q=S3xC12
dρLabelID
S3xC3xC1272S3xC3xC12216,136

Semidirect products G=N:Q with N=C3 and Q=S3xC12
extensionφ:Q→Aut NdρLabelID
C3:1(S3xC12) = C3xC6.D6φ: S3xC12/C3xDic3C2 ⊆ Aut C3244C3:1(S3xC12)216,120
C3:2(S3xC12) = C12xC3:S3φ: S3xC12/C3xC12C2 ⊆ Aut C372C3:2(S3xC12)216,141
C3:3(S3xC12) = C3xS3xDic3φ: S3xC12/S3xC6C2 ⊆ Aut C3244C3:3(S3xC12)216,119

Non-split extensions G=N.Q with N=C3 and Q=S3xC12
extensionφ:Q→Aut NdρLabelID
C3.1(S3xC12) = C12xD9φ: S3xC12/C3xC12C2 ⊆ Aut C3722C3.1(S3xC12)216,45
C3.2(S3xC12) = C4xC32:C6φ: S3xC12/C3xC12C2 ⊆ Aut C3366C3.2(S3xC12)216,50
C3.3(S3xC12) = C4xC9:C6φ: S3xC12/C3xC12C2 ⊆ Aut C3366C3.3(S3xC12)216,53
C3.4(S3xC12) = S3xC36central extension (φ=1)722C3.4(S3xC12)216,47

׿
x
:
Z
F
o
wr
Q
<