extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC10).(C2xC6) = C3xD4:2D5 | φ: C2xC6/C3 → C22 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).(C2xC6) | 240,160 |
(C2xC10).2(C2xC6) = C15xC4oD4 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 120 | 2 | (C2xC10).2(C2xC6) | 240,188 |
(C2xC10).3(C2xC6) = C12xDic5 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).3(C2xC6) | 240,40 |
(C2xC10).4(C2xC6) = C3xC10.D4 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).4(C2xC6) | 240,41 |
(C2xC10).5(C2xC6) = C3xC4:Dic5 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).5(C2xC6) | 240,42 |
(C2xC10).6(C2xC6) = C3xD10:C4 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 120 | | (C2xC10).6(C2xC6) | 240,43 |
(C2xC10).7(C2xC6) = C3xC23.D5 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 120 | | (C2xC10).7(C2xC6) | 240,48 |
(C2xC10).8(C2xC6) = C6xDic10 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).8(C2xC6) | 240,155 |
(C2xC10).9(C2xC6) = D5xC2xC12 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 120 | | (C2xC10).9(C2xC6) | 240,156 |
(C2xC10).10(C2xC6) = C6xD20 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 120 | | (C2xC10).10(C2xC6) | 240,157 |
(C2xC10).11(C2xC6) = C3xC4oD20 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 120 | 2 | (C2xC10).11(C2xC6) | 240,158 |
(C2xC10).12(C2xC6) = C2xC6xDic5 | φ: C2xC6/C6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).12(C2xC6) | 240,163 |
(C2xC10).13(C2xC6) = C15xC22:C4 | central extension (φ=1) | 120 | | (C2xC10).13(C2xC6) | 240,82 |
(C2xC10).14(C2xC6) = C15xC4:C4 | central extension (φ=1) | 240 | | (C2xC10).14(C2xC6) | 240,83 |
(C2xC10).15(C2xC6) = Q8xC30 | central extension (φ=1) | 240 | | (C2xC10).15(C2xC6) | 240,187 |