Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C2xC6

Direct product G=NxQ with N=C2xC10 and Q=C2xC6
dρLabelID
C23xC30240C2^3xC30240,208

Semidirect products G=N:Q with N=C2xC10 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C2xC10):(C2xC6) = C2xD5xA4φ: C2xC6/C2C6 ⊆ Aut C2xC10306+(C2xC10):(C2xC6)240,198
(C2xC10):2(C2xC6) = C3xD4xD5φ: C2xC6/C3C22 ⊆ Aut C2xC10604(C2xC10):2(C2xC6)240,159
(C2xC10):3(C2xC6) = A4xC2xC10φ: C2xC6/C22C3 ⊆ Aut C2xC1060(C2xC10):3(C2xC6)240,203
(C2xC10):4(C2xC6) = D4xC30φ: C2xC6/C6C2 ⊆ Aut C2xC10120(C2xC10):4(C2xC6)240,186
(C2xC10):5(C2xC6) = C6xC5:D4φ: C2xC6/C6C2 ⊆ Aut C2xC10120(C2xC10):5(C2xC6)240,164
(C2xC10):6(C2xC6) = D5xC22xC6φ: C2xC6/C6C2 ⊆ Aut C2xC10120(C2xC10):6(C2xC6)240,205

Non-split extensions G=N.Q with N=C2xC10 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C2xC10).(C2xC6) = C3xD4:2D5φ: C2xC6/C3C22 ⊆ Aut C2xC101204(C2xC10).(C2xC6)240,160
(C2xC10).2(C2xC6) = C15xC4oD4φ: C2xC6/C6C2 ⊆ Aut C2xC101202(C2xC10).2(C2xC6)240,188
(C2xC10).3(C2xC6) = C12xDic5φ: C2xC6/C6C2 ⊆ Aut C2xC10240(C2xC10).3(C2xC6)240,40
(C2xC10).4(C2xC6) = C3xC10.D4φ: C2xC6/C6C2 ⊆ Aut C2xC10240(C2xC10).4(C2xC6)240,41
(C2xC10).5(C2xC6) = C3xC4:Dic5φ: C2xC6/C6C2 ⊆ Aut C2xC10240(C2xC10).5(C2xC6)240,42
(C2xC10).6(C2xC6) = C3xD10:C4φ: C2xC6/C6C2 ⊆ Aut C2xC10120(C2xC10).6(C2xC6)240,43
(C2xC10).7(C2xC6) = C3xC23.D5φ: C2xC6/C6C2 ⊆ Aut C2xC10120(C2xC10).7(C2xC6)240,48
(C2xC10).8(C2xC6) = C6xDic10φ: C2xC6/C6C2 ⊆ Aut C2xC10240(C2xC10).8(C2xC6)240,155
(C2xC10).9(C2xC6) = D5xC2xC12φ: C2xC6/C6C2 ⊆ Aut C2xC10120(C2xC10).9(C2xC6)240,156
(C2xC10).10(C2xC6) = C6xD20φ: C2xC6/C6C2 ⊆ Aut C2xC10120(C2xC10).10(C2xC6)240,157
(C2xC10).11(C2xC6) = C3xC4oD20φ: C2xC6/C6C2 ⊆ Aut C2xC101202(C2xC10).11(C2xC6)240,158
(C2xC10).12(C2xC6) = C2xC6xDic5φ: C2xC6/C6C2 ⊆ Aut C2xC10240(C2xC10).12(C2xC6)240,163
(C2xC10).13(C2xC6) = C15xC22:C4central extension (φ=1)120(C2xC10).13(C2xC6)240,82
(C2xC10).14(C2xC6) = C15xC4:C4central extension (φ=1)240(C2xC10).14(C2xC6)240,83
(C2xC10).15(C2xC6) = Q8xC30central extension (φ=1)240(C2xC10).15(C2xC6)240,187

׿
x
:
Z
F
o
wr
Q
<