Extensions 1→N→G→Q→1 with N=C2xC20 and Q=S3

Direct product G=NxQ with N=C2xC20 and Q=S3
dρLabelID
S3xC2xC20120S3xC2xC20240,166

Semidirect products G=N:Q with N=C2xC20 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC20):1S3 = C5xD6:C4φ: S3/C3C2 ⊆ Aut C2xC20120(C2xC20):1S3240,59
(C2xC20):2S3 = D30:3C4φ: S3/C3C2 ⊆ Aut C2xC20120(C2xC20):2S3240,75
(C2xC20):3S3 = C2xD60φ: S3/C3C2 ⊆ Aut C2xC20120(C2xC20):3S3240,177
(C2xC20):4S3 = D60:11C2φ: S3/C3C2 ⊆ Aut C2xC201202(C2xC20):4S3240,178
(C2xC20):5S3 = C2xC4xD15φ: S3/C3C2 ⊆ Aut C2xC20120(C2xC20):5S3240,176
(C2xC20):6S3 = C10xD12φ: S3/C3C2 ⊆ Aut C2xC20120(C2xC20):6S3240,167
(C2xC20):7S3 = C5xC4oD12φ: S3/C3C2 ⊆ Aut C2xC201202(C2xC20):7S3240,168

Non-split extensions G=N.Q with N=C2xC20 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC20).1S3 = C5xDic3:C4φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).1S3240,57
(C2xC20).2S3 = C30.4Q8φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).2S3240,73
(C2xC20).3S3 = C60:5C4φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).3S3240,74
(C2xC20).4S3 = C2xDic30φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).4S3240,175
(C2xC20).5S3 = C60.7C4φ: S3/C3C2 ⊆ Aut C2xC201202(C2xC20).5S3240,71
(C2xC20).6S3 = C2xC15:3C8φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).6S3240,70
(C2xC20).7S3 = C4xDic15φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).7S3240,72
(C2xC20).8S3 = C5xC4.Dic3φ: S3/C3C2 ⊆ Aut C2xC201202(C2xC20).8S3240,55
(C2xC20).9S3 = C5xC4:Dic3φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).9S3240,58
(C2xC20).10S3 = C10xDic6φ: S3/C3C2 ⊆ Aut C2xC20240(C2xC20).10S3240,165
(C2xC20).11S3 = C10xC3:C8central extension (φ=1)240(C2xC20).11S3240,54
(C2xC20).12S3 = Dic3xC20central extension (φ=1)240(C2xC20).12S3240,56

׿
x
:
Z
F
o
wr
Q
<