Extensions 1→N→G→Q→1 with N=C4 and Q=C6xD5

Direct product G=NxQ with N=C4 and Q=C6xD5
dρLabelID
D5xC2xC12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C4 and Q=C6xD5
extensionφ:Q→Aut NdρLabelID
C4:1(C6xD5) = C3xD4xD5φ: C6xD5/C3xD5C2 ⊆ Aut C4604C4:1(C6xD5)240,159
C4:2(C6xD5) = C6xD20φ: C6xD5/C30C2 ⊆ Aut C4120C4:2(C6xD5)240,157

Non-split extensions G=N.Q with N=C4 and Q=C6xD5
extensionφ:Q→Aut NdρLabelID
C4.1(C6xD5) = C3xD4:D5φ: C6xD5/C3xD5C2 ⊆ Aut C41204C4.1(C6xD5)240,44
C4.2(C6xD5) = C3xD4.D5φ: C6xD5/C3xD5C2 ⊆ Aut C41204C4.2(C6xD5)240,45
C4.3(C6xD5) = C3xQ8:D5φ: C6xD5/C3xD5C2 ⊆ Aut C41204C4.3(C6xD5)240,46
C4.4(C6xD5) = C3xC5:Q16φ: C6xD5/C3xD5C2 ⊆ Aut C42404C4.4(C6xD5)240,47
C4.5(C6xD5) = C3xD4:2D5φ: C6xD5/C3xD5C2 ⊆ Aut C41204C4.5(C6xD5)240,160
C4.6(C6xD5) = C3xQ8xD5φ: C6xD5/C3xD5C2 ⊆ Aut C41204C4.6(C6xD5)240,161
C4.7(C6xD5) = C3xQ8:2D5φ: C6xD5/C3xD5C2 ⊆ Aut C41204C4.7(C6xD5)240,162
C4.8(C6xD5) = C3xC40:C2φ: C6xD5/C30C2 ⊆ Aut C41202C4.8(C6xD5)240,35
C4.9(C6xD5) = C3xD40φ: C6xD5/C30C2 ⊆ Aut C41202C4.9(C6xD5)240,36
C4.10(C6xD5) = C3xDic20φ: C6xD5/C30C2 ⊆ Aut C42402C4.10(C6xD5)240,37
C4.11(C6xD5) = C6xDic10φ: C6xD5/C30C2 ⊆ Aut C4240C4.11(C6xD5)240,155
C4.12(C6xD5) = D5xC24central extension (φ=1)1202C4.12(C6xD5)240,33
C4.13(C6xD5) = C3xC8:D5central extension (φ=1)1202C4.13(C6xD5)240,34
C4.14(C6xD5) = C6xC5:2C8central extension (φ=1)240C4.14(C6xD5)240,38
C4.15(C6xD5) = C3xC4.Dic5central extension (φ=1)1202C4.15(C6xD5)240,39
C4.16(C6xD5) = C3xC4oD20central extension (φ=1)1202C4.16(C6xD5)240,158

׿
x
:
Z
F
o
wr
Q
<