Extensions 1→N→G→Q→1 with N=C3xD20 and Q=C2

Direct product G=NxQ with N=C3xD20 and Q=C2
dρLabelID
C6xD20120C6xD20240,157

Semidirect products G=N:Q with N=C3xD20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD20):1C2 = C3:D40φ: C2/C1C2 ⊆ Out C3xD201204+(C3xD20):1C2240,14
(C3xD20):2C2 = D20:5S3φ: C2/C1C2 ⊆ Out C3xD201204-(C3xD20):2C2240,126
(C3xD20):3C2 = S3xD20φ: C2/C1C2 ⊆ Out C3xD20604+(C3xD20):3C2240,137
(C3xD20):4C2 = C15:D8φ: C2/C1C2 ⊆ Out C3xD201204(C3xD20):4C2240,13
(C3xD20):5C2 = D20:S3φ: C2/C1C2 ⊆ Out C3xD201204(C3xD20):5C2240,127
(C3xD20):6C2 = C20:D6φ: C2/C1C2 ⊆ Out C3xD20604(C3xD20):6C2240,138
(C3xD20):7C2 = C3xD40φ: C2/C1C2 ⊆ Out C3xD201202(C3xD20):7C2240,36
(C3xD20):8C2 = C3xD4:D5φ: C2/C1C2 ⊆ Out C3xD201204(C3xD20):8C2240,44
(C3xD20):9C2 = C3xD4xD5φ: C2/C1C2 ⊆ Out C3xD20604(C3xD20):9C2240,159
(C3xD20):10C2 = C3xQ8:2D5φ: C2/C1C2 ⊆ Out C3xD201204(C3xD20):10C2240,162
(C3xD20):11C2 = C3xC4oD20φ: trivial image1202(C3xD20):11C2240,158

Non-split extensions G=N.Q with N=C3xD20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD20).1C2 = C6.D20φ: C2/C1C2 ⊆ Out C3xD201204-(C3xD20).1C2240,18
(C3xD20).2C2 = C30.D4φ: C2/C1C2 ⊆ Out C3xD201204(C3xD20).2C2240,16
(C3xD20).3C2 = C3xC40:C2φ: C2/C1C2 ⊆ Out C3xD201202(C3xD20).3C2240,35
(C3xD20).4C2 = C3xQ8:D5φ: C2/C1C2 ⊆ Out C3xD201204(C3xD20).4C2240,46

׿
x
:
Z
F
o
wr
Q
<