Extensions 1→N→G→Q→1 with N=C4xS3 and Q=D5

Direct product G=NxQ with N=C4xS3 and Q=D5
dρLabelID
C4xS3xD5604C4xS3xD5240,135

Semidirect products G=N:Q with N=C4xS3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4xS3):1D5 = D20:5S3φ: D5/C5C2 ⊆ Out C4xS31204-(C4xS3):1D5240,126
(C4xS3):2D5 = D60:C2φ: D5/C5C2 ⊆ Out C4xS31204+(C4xS3):2D5240,130
(C4xS3):3D5 = S3xD20φ: D5/C5C2 ⊆ Out C4xS3604+(C4xS3):3D5240,137
(C4xS3):4D5 = D6.D10φ: D5/C5C2 ⊆ Out C4xS31204(C4xS3):4D5240,132

Non-split extensions G=N.Q with N=C4xS3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4xS3).1D5 = S3xDic10φ: D5/C5C2 ⊆ Out C4xS31204-(C4xS3).1D5240,128
(C4xS3).2D5 = D6.Dic5φ: D5/C5C2 ⊆ Out C4xS31204(C4xS3).2D5240,11
(C4xS3).3D5 = S3xC5:2C8φ: trivial image1204(C4xS3).3D5240,8

׿
x
:
Z
F
o
wr
Q
<