Extensions 1→N→G→Q→1 with N=C2xC14 and Q=D4

Direct product G=NxQ with N=C2xC14 and Q=D4
dρLabelID
D4xC2xC14112D4xC2xC14224,190

Semidirect products G=N:Q with N=C2xC14 and Q=D4
extensionφ:Q→Aut NdρLabelID
(C2xC14):1D4 = C22:D28φ: D4/C2C22 ⊆ Aut C2xC1456(C2xC14):1D4224,77
(C2xC14):2D4 = C23:D14φ: D4/C2C22 ⊆ Aut C2xC1456(C2xC14):2D4224,132
(C2xC14):3D4 = Dic7:D4φ: D4/C2C22 ⊆ Aut C2xC14112(C2xC14):3D4224,134
(C2xC14):4D4 = C7xC4:D4φ: D4/C4C2 ⊆ Aut C2xC14112(C2xC14):4D4224,156
(C2xC14):5D4 = C28:7D4φ: D4/C4C2 ⊆ Aut C2xC14112(C2xC14):5D4224,125
(C2xC14):6D4 = C22xD28φ: D4/C4C2 ⊆ Aut C2xC14112(C2xC14):6D4224,176
(C2xC14):7D4 = C7xC22wrC2φ: D4/C22C2 ⊆ Aut C2xC1456(C2xC14):7D4224,155
(C2xC14):8D4 = C24:D7φ: D4/C22C2 ⊆ Aut C2xC1456(C2xC14):8D4224,148
(C2xC14):9D4 = C22xC7:D4φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14):9D4224,188

Non-split extensions G=N.Q with N=C2xC14 and Q=D4
extensionφ:Q→Aut NdρLabelID
(C2xC14).1D4 = D28:4C4φ: D4/C2C22 ⊆ Aut C2xC14564(C2xC14).1D4224,31
(C2xC14).2D4 = C23:Dic7φ: D4/C2C22 ⊆ Aut C2xC14564(C2xC14).2D4224,40
(C2xC14).3D4 = D4:2Dic7φ: D4/C2C22 ⊆ Aut C2xC14564(C2xC14).3D4224,43
(C2xC14).4D4 = C22.D28φ: D4/C2C22 ⊆ Aut C2xC14112(C2xC14).4D4224,81
(C2xC14).5D4 = C8:D14φ: D4/C2C22 ⊆ Aut C2xC14564+(C2xC14).5D4224,103
(C2xC14).6D4 = C8.D14φ: D4/C2C22 ⊆ Aut C2xC141124-(C2xC14).6D4224,104
(C2xC14).7D4 = C23.18D14φ: D4/C2C22 ⊆ Aut C2xC14112(C2xC14).7D4224,130
(C2xC14).8D4 = D4:D14φ: D4/C2C22 ⊆ Aut C2xC14564+(C2xC14).8D4224,144
(C2xC14).9D4 = D4.8D14φ: D4/C2C22 ⊆ Aut C2xC141124(C2xC14).9D4224,145
(C2xC14).10D4 = D4.9D14φ: D4/C2C22 ⊆ Aut C2xC141124-(C2xC14).10D4224,146
(C2xC14).11D4 = C7xC4oD8φ: D4/C4C2 ⊆ Aut C2xC141122(C2xC14).11D4224,170
(C2xC14).12D4 = C28.44D4φ: D4/C4C2 ⊆ Aut C2xC14224(C2xC14).12D4224,22
(C2xC14).13D4 = C8:Dic7φ: D4/C4C2 ⊆ Aut C2xC14224(C2xC14).13D4224,23
(C2xC14).14D4 = C56:1C4φ: D4/C4C2 ⊆ Aut C2xC14224(C2xC14).14D4224,24
(C2xC14).15D4 = C2.D56φ: D4/C4C2 ⊆ Aut C2xC14112(C2xC14).15D4224,27
(C2xC14).16D4 = C2xC56:C2φ: D4/C4C2 ⊆ Aut C2xC14112(C2xC14).16D4224,97
(C2xC14).17D4 = C2xD56φ: D4/C4C2 ⊆ Aut C2xC14112(C2xC14).17D4224,98
(C2xC14).18D4 = D56:7C2φ: D4/C4C2 ⊆ Aut C2xC141122(C2xC14).18D4224,99
(C2xC14).19D4 = C2xDic28φ: D4/C4C2 ⊆ Aut C2xC14224(C2xC14).19D4224,100
(C2xC14).20D4 = C2xC4:Dic7φ: D4/C4C2 ⊆ Aut C2xC14224(C2xC14).20D4224,120
(C2xC14).21D4 = C7xC23:C4φ: D4/C22C2 ⊆ Aut C2xC14564(C2xC14).21D4224,48
(C2xC14).22D4 = C7xC4wrC2φ: D4/C22C2 ⊆ Aut C2xC14562(C2xC14).22D4224,53
(C2xC14).23D4 = C7xC22.D4φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).23D4224,158
(C2xC14).24D4 = C7xC8:C22φ: D4/C22C2 ⊆ Aut C2xC14564(C2xC14).24D4224,171
(C2xC14).25D4 = C7xC8.C22φ: D4/C22C2 ⊆ Aut C2xC141124(C2xC14).25D4224,172
(C2xC14).26D4 = Dic14:C4φ: D4/C22C2 ⊆ Aut C2xC14562(C2xC14).26D4224,11
(C2xC14).27D4 = C23.1D14φ: D4/C22C2 ⊆ Aut C2xC14564(C2xC14).27D4224,12
(C2xC14).28D4 = C28.Q8φ: D4/C22C2 ⊆ Aut C2xC14224(C2xC14).28D4224,13
(C2xC14).29D4 = C4.Dic14φ: D4/C22C2 ⊆ Aut C2xC14224(C2xC14).29D4224,14
(C2xC14).30D4 = C14.D8φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).30D4224,15
(C2xC14).31D4 = C14.Q16φ: D4/C22C2 ⊆ Aut C2xC14224(C2xC14).31D4224,16
(C2xC14).32D4 = C14.C42φ: D4/C22C2 ⊆ Aut C2xC14224(C2xC14).32D4224,37
(C2xC14).33D4 = D4:Dic7φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).33D4224,38
(C2xC14).34D4 = Q8:Dic7φ: D4/C22C2 ⊆ Aut C2xC14224(C2xC14).34D4224,41
(C2xC14).35D4 = C2xDic7:C4φ: D4/C22C2 ⊆ Aut C2xC14224(C2xC14).35D4224,118
(C2xC14).36D4 = C2xD14:C4φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).36D4224,122
(C2xC14).37D4 = C23.23D14φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).37D4224,124
(C2xC14).38D4 = C2xD4:D7φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).38D4224,126
(C2xC14).39D4 = D4.D14φ: D4/C22C2 ⊆ Aut C2xC14564(C2xC14).39D4224,127
(C2xC14).40D4 = C2xD4.D7φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).40D4224,128
(C2xC14).41D4 = C2xQ8:D7φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).41D4224,136
(C2xC14).42D4 = C28.C23φ: D4/C22C2 ⊆ Aut C2xC141124(C2xC14).42D4224,137
(C2xC14).43D4 = C2xC7:Q16φ: D4/C22C2 ⊆ Aut C2xC14224(C2xC14).43D4224,138
(C2xC14).44D4 = C2xC23.D7φ: D4/C22C2 ⊆ Aut C2xC14112(C2xC14).44D4224,147
(C2xC14).45D4 = C7xC2.C42central extension (φ=1)224(C2xC14).45D4224,44
(C2xC14).46D4 = C7xD4:C4central extension (φ=1)112(C2xC14).46D4224,51
(C2xC14).47D4 = C7xQ8:C4central extension (φ=1)224(C2xC14).47D4224,52
(C2xC14).48D4 = C7xC4.Q8central extension (φ=1)224(C2xC14).48D4224,55
(C2xC14).49D4 = C7xC2.D8central extension (φ=1)224(C2xC14).49D4224,56
(C2xC14).50D4 = C14xC22:C4central extension (φ=1)112(C2xC14).50D4224,150
(C2xC14).51D4 = C14xC4:C4central extension (φ=1)224(C2xC14).51D4224,151
(C2xC14).52D4 = C14xD8central extension (φ=1)112(C2xC14).52D4224,167
(C2xC14).53D4 = C14xSD16central extension (φ=1)112(C2xC14).53D4224,168
(C2xC14).54D4 = C14xQ16central extension (φ=1)224(C2xC14).54D4224,169

׿
x
:
Z
F
o
wr
Q
<