Extensions 1→N→G→Q→1 with N=C6 and Q=C2xDic5

Direct product G=NxQ with N=C6 and Q=C2xDic5
dρLabelID
C2xC6xDic5240C2xC6xDic5240,163

Semidirect products G=N:Q with N=C6 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
C6:1(C2xDic5) = C2xS3xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C6120C6:1(C2xDic5)240,142
C6:2(C2xDic5) = C22xDic15φ: C2xDic5/C2xC10C2 ⊆ Aut C6240C6:2(C2xDic5)240,183

Non-split extensions G=N.Q with N=C6 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
C6.1(C2xDic5) = S3xC5:2C8φ: C2xDic5/Dic5C2 ⊆ Aut C61204C6.1(C2xDic5)240,8
C6.2(C2xDic5) = D6.Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C61204C6.2(C2xDic5)240,11
C6.3(C2xDic5) = Dic3xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C6240C6.3(C2xDic5)240,25
C6.4(C2xDic5) = D6:Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C6120C6.4(C2xDic5)240,27
C6.5(C2xDic5) = C6.Dic10φ: C2xDic5/Dic5C2 ⊆ Aut C6240C6.5(C2xDic5)240,31
C6.6(C2xDic5) = C2xC15:3C8φ: C2xDic5/C2xC10C2 ⊆ Aut C6240C6.6(C2xDic5)240,70
C6.7(C2xDic5) = C60.7C4φ: C2xDic5/C2xC10C2 ⊆ Aut C61202C6.7(C2xDic5)240,71
C6.8(C2xDic5) = C4xDic15φ: C2xDic5/C2xC10C2 ⊆ Aut C6240C6.8(C2xDic5)240,72
C6.9(C2xDic5) = C60:5C4φ: C2xDic5/C2xC10C2 ⊆ Aut C6240C6.9(C2xDic5)240,74
C6.10(C2xDic5) = C30.38D4φ: C2xDic5/C2xC10C2 ⊆ Aut C6120C6.10(C2xDic5)240,80
C6.11(C2xDic5) = C6xC5:2C8central extension (φ=1)240C6.11(C2xDic5)240,38
C6.12(C2xDic5) = C3xC4.Dic5central extension (φ=1)1202C6.12(C2xDic5)240,39
C6.13(C2xDic5) = C12xDic5central extension (φ=1)240C6.13(C2xDic5)240,40
C6.14(C2xDic5) = C3xC4:Dic5central extension (φ=1)240C6.14(C2xDic5)240,42
C6.15(C2xDic5) = C3xC23.D5central extension (φ=1)120C6.15(C2xDic5)240,48

׿
x
:
Z
F
o
wr
Q
<