Extensions 1→N→G→Q→1 with N=Dic3:C4 and Q=C6

Direct product G=NxQ with N=Dic3:C4 and Q=C6
dρLabelID
C6xDic3:C496C6xDic3:C4288,694

Semidirect products G=N:Q with N=Dic3:C4 and Q=C6
extensionφ:Q→Out NdρLabelID
Dic3:C4:1C6 = C3xC42:3S3φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4:1C6288,647
Dic3:C4:2C6 = C3xC12.48D4φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:2C6288,695
Dic3:C4:3C6 = C3xC23.28D6φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:3C6288,700
Dic3:C4:4C6 = C3xDic3.D4φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:4C6288,649
Dic3:C4:5C6 = C3xDic3:D4φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:5C6288,655
Dic3:C4:6C6 = C3xD6.D4φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4:6C6288,665
Dic3:C4:7C6 = C3xC23.16D6φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:7C6288,648
Dic3:C4:8C6 = C3xC23.8D6φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:8C6288,650
Dic3:C4:9C6 = C3xDic3:4D4φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:9C6288,652
Dic3:C4:10C6 = C3xC23.9D6φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:10C6288,654
Dic3:C4:11C6 = C3xS3xC4:C4φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4:11C6288,662
Dic3:C4:12C6 = C3xD6:Q8φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4:12C6288,667
Dic3:C4:13C6 = C3xC4:C4:S3φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4:13C6288,669
Dic3:C4:14C6 = C3xC23.23D6φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:14C6288,706
Dic3:C4:15C6 = C3xC23.14D6φ: C6/C3C2 ⊆ Out Dic3:C448Dic3:C4:15C6288,710
Dic3:C4:16C6 = C3xD6:3Q8φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4:16C6288,717
Dic3:C4:17C6 = C3xC42:2S3φ: trivial image96Dic3:C4:17C6288,643
Dic3:C4:18C6 = C12xC3:D4φ: trivial image48Dic3:C4:18C6288,699

Non-split extensions G=N.Q with N=Dic3:C4 and Q=C6
extensionφ:Q→Out NdρLabelID
Dic3:C4.1C6 = C3xC12.6Q8φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4.1C6288,641
Dic3:C4.2C6 = C3xC12:Q8φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4.2C6288,659
Dic3:C4.3C6 = C3xC4.Dic6φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4.3C6288,661
Dic3:C4.4C6 = C3xDic6:C4φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4.4C6288,658
Dic3:C4.5C6 = C3xDic3.Q8φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4.5C6288,660
Dic3:C4.6C6 = C3xDic3:Q8φ: C6/C3C2 ⊆ Out Dic3:C496Dic3:C4.6C6288,715
Dic3:C4.7C6 = C12xDic6φ: trivial image96Dic3:C4.7C6288,639

׿
x
:
Z
F
o
wr
Q
<