Extensions 1→N→G→Q→1 with N=C4oD4 and Q=C3:S3

Direct product G=NxQ with N=C4oD4 and Q=C3:S3
dρLabelID
C4oD4xC3:S372C4oD4xC3:S3288,1013

Semidirect products G=N:Q with N=C4oD4 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
C4oD4:1(C3:S3) = C12.14S4φ: C3:S3/C3S3 ⊆ Out C4oD4484C4oD4:1(C3:S3)288,914
C4oD4:2(C3:S3) = C12.7S4φ: C3:S3/C3S3 ⊆ Out C4oD4484+C4oD4:2(C3:S3)288,915
C4oD4:3(C3:S3) = C62.73D4φ: C3:S3/C32C2 ⊆ Out C4oD472C4oD4:3(C3:S3)288,806
C4oD4:4(C3:S3) = C62.74D4φ: C3:S3/C32C2 ⊆ Out C4oD4144C4oD4:4(C3:S3)288,807
C4oD4:5(C3:S3) = C62.154C23φ: C3:S3/C32C2 ⊆ Out C4oD472C4oD4:5(C3:S3)288,1014
C4oD4:6(C3:S3) = C32:92- 1+4φ: C3:S3/C32C2 ⊆ Out C4oD4144C4oD4:6(C3:S3)288,1015

Non-split extensions G=N.Q with N=C4oD4 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
C4oD4.1(C3:S3) = C3:U2(F3)φ: C3:S3/C3S3 ⊆ Out C4oD4724C4oD4.1(C3:S3)288,404
C4oD4.2(C3:S3) = C12.6S4φ: C3:S3/C3S3 ⊆ Out C4oD4964-C4oD4.2(C3:S3)288,913
C4oD4.3(C3:S3) = C62.39D4φ: C3:S3/C32C2 ⊆ Out C4oD472C4oD4.3(C3:S3)288,312
C4oD4.4(C3:S3) = C62.75D4φ: C3:S3/C32C2 ⊆ Out C4oD4144C4oD4.4(C3:S3)288,808
C4oD4.5(C3:S3) = D4.(C3:Dic3)φ: trivial image144C4oD4.5(C3:S3)288,805

׿
x
:
Z
F
o
wr
Q
<