Extensions 1→N→G→Q→1 with N=C3:C8 and Q=Dic3

Direct product G=NxQ with N=C3:C8 and Q=Dic3
dρLabelID
Dic3xC3:C896Dic3xC3:C8288,200

Semidirect products G=N:Q with N=C3:C8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
C3:C8:1Dic3 = C12.Dic6φ: Dic3/C6C2 ⊆ Out C3:C896C3:C8:1Dic3288,221
C3:C8:2Dic3 = C6.18D24φ: Dic3/C6C2 ⊆ Out C3:C896C3:C8:2Dic3288,223
C3:C8:3Dic3 = C3:C8:Dic3φ: Dic3/C6C2 ⊆ Out C3:C896C3:C8:3Dic3288,202
C3:C8:4Dic3 = C2.Dic32φ: Dic3/C6C2 ⊆ Out C3:C896C3:C8:4Dic3288,203
C3:C8:5Dic3 = C6.(S3xC8)φ: trivial image96C3:C8:5Dic3288,201

Non-split extensions G=N.Q with N=C3:C8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
C3:C8.1Dic3 = C12.82D12φ: Dic3/C6C2 ⊆ Out C3:C8484C3:C8.1Dic3288,225
C3:C8.2Dic3 = C24.61D6φ: Dic3/C6C2 ⊆ Out C3:C8964C3:C8.2Dic3288,191
C3:C8.3Dic3 = S3xC3:C16φ: trivial image964C3:C8.3Dic3288,189

׿
x
:
Z
F
o
wr
Q
<