Extensions 1→N→G→Q→1 with N=C6 and Q=C4xC12

Direct product G=NxQ with N=C6 and Q=C4xC12
dρLabelID
C2xC122288C2xC12^2288,811

Semidirect products G=N:Q with N=C6 and Q=C4xC12
extensionφ:Q→Aut NdρLabelID
C6:(C4xC12) = Dic3xC2xC12φ: C4xC12/C2xC12C2 ⊆ Aut C696C6:(C4xC12)288,693

Non-split extensions G=N.Q with N=C6 and Q=C4xC12
extensionφ:Q→Aut NdρLabelID
C6.1(C4xC12) = C12xC3:C8φ: C4xC12/C2xC12C2 ⊆ Aut C696C6.1(C4xC12)288,236
C6.2(C4xC12) = C3xC42.S3φ: C4xC12/C2xC12C2 ⊆ Aut C696C6.2(C4xC12)288,237
C6.3(C4xC12) = Dic3xC24φ: C4xC12/C2xC12C2 ⊆ Aut C696C6.3(C4xC12)288,247
C6.4(C4xC12) = C3xC24:C4φ: C4xC12/C2xC12C2 ⊆ Aut C696C6.4(C4xC12)288,249
C6.5(C4xC12) = C3xC6.C42φ: C4xC12/C2xC12C2 ⊆ Aut C696C6.5(C4xC12)288,265
C6.6(C4xC12) = C9xC2.C42central extension (φ=1)288C6.6(C4xC12)288,45
C6.7(C4xC12) = C9xC8:C4central extension (φ=1)288C6.7(C4xC12)288,47
C6.8(C4xC12) = C32xC2.C42central extension (φ=1)288C6.8(C4xC12)288,313
C6.9(C4xC12) = C32xC8:C4central extension (φ=1)288C6.9(C4xC12)288,315

׿
x
:
Z
F
o
wr
Q
<