Extensions 1→N→G→Q→1 with N=C3xSD16 and Q=C6

Direct product G=NxQ with N=C3xSD16 and Q=C6
dρLabelID
SD16xC3xC6144SD16xC3xC6288,830

Semidirect products G=N:Q with N=C3xSD16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xSD16):1C6 = C3xQ8:3D6φ: C6/C3C2 ⊆ Out C3xSD16484(C3xSD16):1C6288,685
(C3xSD16):2C6 = C3xD4.D6φ: C6/C3C2 ⊆ Out C3xSD16484(C3xSD16):2C6288,686
(C3xSD16):3C6 = C3xS3xSD16φ: C6/C3C2 ⊆ Out C3xSD16484(C3xSD16):3C6288,684
(C3xSD16):4C6 = C3xQ8.7D6φ: C6/C3C2 ⊆ Out C3xSD16484(C3xSD16):4C6288,687
(C3xSD16):5C6 = C32xC8:C22φ: C6/C3C2 ⊆ Out C3xSD1672(C3xSD16):5C6288,833
(C3xSD16):6C6 = C32xC8.C22φ: C6/C3C2 ⊆ Out C3xSD16144(C3xSD16):6C6288,834
(C3xSD16):7C6 = C32xC4oD8φ: trivial image144(C3xSD16):7C6288,832

Non-split extensions G=N.Q with N=C3xSD16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xSD16).1C6 = C9xC8:C22φ: C6/C3C2 ⊆ Out C3xSD16724(C3xSD16).1C6288,186
(C3xSD16).2C6 = C9xC8.C22φ: C6/C3C2 ⊆ Out C3xSD161444(C3xSD16).2C6288,187
(C3xSD16).3C6 = SD16xC18φ: trivial image144(C3xSD16).3C6288,183
(C3xSD16).4C6 = C9xC4oD8φ: trivial image1442(C3xSD16).4C6288,185

׿
x
:
Z
F
o
wr
Q
<