Extensions 1→N→G→Q→1 with N=S3xSL2(F3) and Q=C2

Direct product G=NxQ with N=S3xSL2(F3) and Q=C2
dρLabelID
C2xS3xSL2(F3)48C2xS3xSL(2,3)288,922

Semidirect products G=N:Q with N=S3xSL2(F3) and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xSL2(F3)):1C2 = D6.S4φ: C2/C1C2 ⊆ Out S3xSL2(F3)484-(S3xSL(2,3)):1C2288,849
(S3xSL2(F3)):2C2 = D6.2S4φ: C2/C1C2 ⊆ Out S3xSL2(F3)484(S3xSL(2,3)):2C2288,850
(S3xSL2(F3)):3C2 = S3xGL2(F3)φ: C2/C1C2 ⊆ Out S3xSL2(F3)244(S3xSL(2,3)):3C2288,851
(S3xSL2(F3)):4C2 = SL2(F3).11D6φ: C2/C1C2 ⊆ Out S3xSL2(F3)484(S3xSL(2,3)):4C2288,923
(S3xSL2(F3)):5C2 = D12.A4φ: C2/C1C2 ⊆ Out S3xSL2(F3)484-(S3xSL(2,3)):5C2288,926
(S3xSL2(F3)):6C2 = S3xC4.A4φ: trivial image484(S3xSL(2,3)):6C2288,925

Non-split extensions G=N.Q with N=S3xSL2(F3) and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xSL2(F3)).C2 = S3xCSU2(F3)φ: C2/C1C2 ⊆ Out S3xSL2(F3)484-(S3xSL(2,3)).C2288,848

׿
x
:
Z
F
o
wr
Q
<