Extensions 1→N→G→Q→1 with N=C2xD12 and Q=C6

Direct product G=NxQ with N=C2xD12 and Q=C6
dρLabelID
C2xC6xD1296C2xC6xD12288,990

Semidirect products G=N:Q with N=C2xD12 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xD12):1C6 = C3xC4:D12φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12):1C6288,645
(C2xD12):2C6 = C3xD6:D4φ: C6/C3C2 ⊆ Out C2xD1248(C2xD12):2C6288,653
(C2xD12):3C6 = C3xDic3:D4φ: C6/C3C2 ⊆ Out C2xD1248(C2xD12):3C6288,655
(C2xD12):4C6 = C6xD24φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12):4C6288,674
(C2xD12):5C6 = C3xC12:7D4φ: C6/C3C2 ⊆ Out C2xD1248(C2xD12):5C6288,701
(C2xD12):6C6 = C3xC12:D4φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12):6C6288,666
(C2xD12):7C6 = C3xC8:D6φ: C6/C3C2 ⊆ Out C2xD12484(C2xD12):7C6288,679
(C2xD12):8C6 = C6xD4:S3φ: C6/C3C2 ⊆ Out C2xD1248(C2xD12):8C6288,702
(C2xD12):9C6 = C3xC12:3D4φ: C6/C3C2 ⊆ Out C2xD1248(C2xD12):9C6288,711
(C2xD12):10C6 = C3xD4:D6φ: C6/C3C2 ⊆ Out C2xD12484(C2xD12):10C6288,720
(C2xD12):11C6 = S3xC6xD4φ: C6/C3C2 ⊆ Out C2xD1248(C2xD12):11C6288,992
(C2xD12):12C6 = C6xQ8:3S3φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12):12C6288,996
(C2xD12):13C6 = C3xD4oD12φ: C6/C3C2 ⊆ Out C2xD12484(C2xD12):13C6288,999
(C2xD12):14C6 = C6xC4oD12φ: trivial image48(C2xD12):14C6288,991

Non-split extensions G=N.Q with N=C2xD12 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xD12).1C6 = C3xC2.D24φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).1C6288,255
(C2xD12).2C6 = C3xC42:7S3φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).2C6288,646
(C2xD12).3C6 = C3xD6.D4φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).3C6288,665
(C2xD12).4C6 = C6xC24:C2φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).4C6288,673
(C2xD12).5C6 = C3xC6.D8φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).5C6288,243
(C2xD12).6C6 = C3xC12.46D4φ: C6/C3C2 ⊆ Out C2xD12484(C2xD12).6C6288,257
(C2xD12).7C6 = C3xDic3:5D4φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).7C6288,664
(C2xD12).8C6 = C6xQ8:2S3φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).8C6288,712
(C2xD12).9C6 = C3xC12.23D4φ: C6/C3C2 ⊆ Out C2xD1296(C2xD12).9C6288,718
(C2xD12).10C6 = C12xD12φ: trivial image96(C2xD12).10C6288,644

׿
x
:
Z
F
o
wr
Q
<