Extensions 1→N→G→Q→1 with N=S3xQ8 and Q=S3

Direct product G=NxQ with N=S3xQ8 and Q=S3
dρLabelID
S32xQ8488-S3^2xQ8288,965

Semidirect products G=N:Q with N=S3xQ8 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3xQ8):1S3 = D6.S4φ: S3/C1S3 ⊆ Out S3xQ8484-(S3xQ8):1S3288,849
(S3xQ8):2S3 = D6.2S4φ: S3/C1S3 ⊆ Out S3xQ8484(S3xQ8):2S3288,850
(S3xQ8):3S3 = S3xGL2(F3)φ: S3/C1S3 ⊆ Out S3xQ8244(S3xQ8):3S3288,851
(S3xQ8):4S3 = S3xQ8:2S3φ: S3/C3C2 ⊆ Out S3xQ8488+(S3xQ8):4S3288,586
(S3xQ8):5S3 = D12.24D6φ: S3/C3C2 ⊆ Out S3xQ8968-(S3xQ8):5S3288,594
(S3xQ8):6S3 = Dic6.22D6φ: S3/C3C2 ⊆ Out S3xQ8488+(S3xQ8):6S3288,596
(S3xQ8):7S3 = D12.25D6φ: S3/C3C2 ⊆ Out S3xQ8488-(S3xQ8):7S3288,963
(S3xQ8):8S3 = Dic6.26D6φ: S3/C3C2 ⊆ Out S3xQ8488+(S3xQ8):8S3288,964
(S3xQ8):9S3 = S3xQ8:3S3φ: trivial image488+(S3xQ8):9S3288,966

Non-split extensions G=N.Q with N=S3xQ8 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3xQ8).S3 = S3xCSU2(F3)φ: S3/C1S3 ⊆ Out S3xQ8484-(S3xQ8).S3288,848
(S3xQ8).2S3 = S3xC3:Q16φ: S3/C3C2 ⊆ Out S3xQ8968-(S3xQ8).2S3288,590

׿
x
:
Z
F
o
wr
Q
<