Extensions 1→N→G→Q→1 with N=S3xD12 and Q=C2

Direct product G=NxQ with N=S3xD12 and Q=C2
dρLabelID
C2xS3xD1248C2xS3xD12288,951

Semidirect products G=N:Q with N=S3xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xD12):1C2 = S3xD24φ: C2/C1C2 ⊆ Out S3xD12484+(S3xD12):1C2288,441
(S3xD12):2C2 = C24:1D6φ: C2/C1C2 ⊆ Out S3xD12484+(S3xD12):2C2288,442
(S3xD12):3C2 = D24:S3φ: C2/C1C2 ⊆ Out S3xD12484(S3xD12):3C2288,443
(S3xD12):4C2 = S3xD4:S3φ: C2/C1C2 ⊆ Out S3xD12488+(S3xD12):4C2288,572
(S3xD12):5C2 = Dic6:3D6φ: C2/C1C2 ⊆ Out S3xD12488+(S3xD12):5C2288,573
(S3xD12):6C2 = D12:6D6φ: C2/C1C2 ⊆ Out S3xD12488+(S3xD12):6C2288,587
(S3xD12):7C2 = D12:24D6φ: C2/C1C2 ⊆ Out S3xD12484(S3xD12):7C2288,955
(S3xD12):8C2 = D12:27D6φ: C2/C1C2 ⊆ Out S3xD12244+(S3xD12):8C2288,956
(S3xD12):9C2 = S32xD4φ: C2/C1C2 ⊆ Out S3xD12248+(S3xD12):9C2288,958
(S3xD12):10C2 = D12:13D6φ: C2/C1C2 ⊆ Out S3xD12248+(S3xD12):10C2288,962
(S3xD12):11C2 = S3xQ8:3S3φ: C2/C1C2 ⊆ Out S3xD12488+(S3xD12):11C2288,966
(S3xD12):12C2 = D12:16D6φ: C2/C1C2 ⊆ Out S3xD12488+(S3xD12):12C2288,968
(S3xD12):13C2 = S3xC4oD12φ: trivial image484(S3xD12):13C2288,953

Non-split extensions G=N.Q with N=S3xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xD12).1C2 = S3xC24:C2φ: C2/C1C2 ⊆ Out S3xD12484(S3xD12).1C2288,440
(S3xD12).2C2 = S3xQ8:2S3φ: C2/C1C2 ⊆ Out S3xD12488+(S3xD12).2C2288,586

׿
x
:
Z
F
o
wr
Q
<