Extensions 1→N→G→Q→1 with N=S3xC3:C8 and Q=C2

Direct product G=NxQ with N=S3xC3:C8 and Q=C2
dρLabelID
C2xS3xC3:C896C2xS3xC3:C8288,460

Semidirect products G=N:Q with N=S3xC3:C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC3:C8):1C2 = S3xD4:S3φ: C2/C1C2 ⊆ Out S3xC3:C8488+(S3xC3:C8):1C2288,572
(S3xC3:C8):2C2 = D12.22D6φ: C2/C1C2 ⊆ Out S3xC3:C8488-(S3xC3:C8):2C2288,581
(S3xC3:C8):3C2 = D12.13D6φ: C2/C1C2 ⊆ Out S3xC3:C8488+(S3xC3:C8):3C2288,597
(S3xC3:C8):4C2 = S3xD4.S3φ: C2/C1C2 ⊆ Out S3xC3:C8488-(S3xC3:C8):4C2288,576
(S3xC3:C8):5C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out S3xC3:C8488+(S3xC3:C8):5C2288,583
(S3xC3:C8):6C2 = S3xQ8:2S3φ: C2/C1C2 ⊆ Out S3xC3:C8488+(S3xC3:C8):6C2288,586
(S3xC3:C8):7C2 = D12.12D6φ: C2/C1C2 ⊆ Out S3xC3:C8968-(S3xC3:C8):7C2288,595
(S3xC3:C8):8C2 = C24.64D6φ: C2/C1C2 ⊆ Out S3xC3:C8484(S3xC3:C8):8C2288,452
(S3xC3:C8):9C2 = D12.2Dic3φ: C2/C1C2 ⊆ Out S3xC3:C8484(S3xC3:C8):9C2288,462
(S3xC3:C8):10C2 = S3xC8:S3φ: C2/C1C2 ⊆ Out S3xC3:C8484(S3xC3:C8):10C2288,438
(S3xC3:C8):11C2 = C24.D6φ: C2/C1C2 ⊆ Out S3xC3:C8484(S3xC3:C8):11C2288,453
(S3xC3:C8):12C2 = S3xC4.Dic3φ: C2/C1C2 ⊆ Out S3xC3:C8484(S3xC3:C8):12C2288,461
(S3xC3:C8):13C2 = D12.Dic3φ: C2/C1C2 ⊆ Out S3xC3:C8484(S3xC3:C8):13C2288,463
(S3xC3:C8):14C2 = S32xC8φ: trivial image484(S3xC3:C8):14C2288,437

Non-split extensions G=N.Q with N=S3xC3:C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC3:C8).C2 = S3xC3:Q16φ: C2/C1C2 ⊆ Out S3xC3:C8968-(S3xC3:C8).C2288,590

׿
x
:
Z
F
o
wr
Q
<