Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C3:C8

Direct product G=NxQ with N=C2xC6 and Q=C3:C8
dρLabelID
C2xC6xC3:C896C2xC6xC3:C8288,691

Semidirect products G=N:Q with N=C2xC6 and Q=C3:C8
extensionφ:Q→Aut NdρLabelID
(C2xC6):1(C3:C8) = C3xA4:C8φ: C3:C8/C4S3 ⊆ Aut C2xC6723(C2xC6):1(C3:C8)288,398
(C2xC6):2(C3:C8) = C12.12S4φ: C3:C8/C4S3 ⊆ Aut C2xC6726(C2xC6):2(C3:C8)288,402
(C2xC6):3(C3:C8) = C3xC12.55D4φ: C3:C8/C12C2 ⊆ Aut C2xC648(C2xC6):3(C3:C8)288,264
(C2xC6):4(C3:C8) = C62:7C8φ: C3:C8/C12C2 ⊆ Aut C2xC6144(C2xC6):4(C3:C8)288,305
(C2xC6):5(C3:C8) = C22xC32:4C8φ: C3:C8/C12C2 ⊆ Aut C2xC6288(C2xC6):5(C3:C8)288,777

Non-split extensions G=N.Q with N=C2xC6 and Q=C3:C8
extensionφ:Q→Aut NdρLabelID
(C2xC6).(C3:C8) = C12.S4φ: C3:C8/C4S3 ⊆ Aut C2xC6726(C2xC6).(C3:C8)288,68
(C2xC6).2(C3:C8) = C3xC12.C8φ: C3:C8/C12C2 ⊆ Aut C2xC6482(C2xC6).2(C3:C8)288,246
(C2xC6).3(C3:C8) = C2xC9:C16φ: C3:C8/C12C2 ⊆ Aut C2xC6288(C2xC6).3(C3:C8)288,18
(C2xC6).4(C3:C8) = C36.C8φ: C3:C8/C12C2 ⊆ Aut C2xC61442(C2xC6).4(C3:C8)288,19
(C2xC6).5(C3:C8) = C36.55D4φ: C3:C8/C12C2 ⊆ Aut C2xC6144(C2xC6).5(C3:C8)288,37
(C2xC6).6(C3:C8) = C22xC9:C8φ: C3:C8/C12C2 ⊆ Aut C2xC6288(C2xC6).6(C3:C8)288,130
(C2xC6).7(C3:C8) = C2xC24.S3φ: C3:C8/C12C2 ⊆ Aut C2xC6288(C2xC6).7(C3:C8)288,286
(C2xC6).8(C3:C8) = C24.94D6φ: C3:C8/C12C2 ⊆ Aut C2xC6144(C2xC6).8(C3:C8)288,287
(C2xC6).9(C3:C8) = C6xC3:C16central extension (φ=1)96(C2xC6).9(C3:C8)288,245

׿
x
:
Z
F
o
wr
Q
<