Extensions 1→N→G→Q→1 with N=C3 and Q=D4xC12

Direct product G=NxQ with N=C3 and Q=D4xC12
dρLabelID
D4xC3xC12144D4xC3xC12288,815

Semidirect products G=N:Q with N=C3 and Q=D4xC12
extensionφ:Q→Aut NdρLabelID
C3:1(D4xC12) = C12xD12φ: D4xC12/C4xC12C2 ⊆ Aut C396C3:1(D4xC12)288,644
C3:2(D4xC12) = C3xDic3:4D4φ: D4xC12/C3xC22:C4C2 ⊆ Aut C348C3:2(D4xC12)288,652
C3:3(D4xC12) = C3xDic3:5D4φ: D4xC12/C3xC4:C4C2 ⊆ Aut C396C3:3(D4xC12)288,664
C3:4(D4xC12) = C12xC3:D4φ: D4xC12/C22xC12C2 ⊆ Aut C348C3:4(D4xC12)288,699
C3:5(D4xC12) = C3xD4xDic3φ: D4xC12/C6xD4C2 ⊆ Aut C348C3:5(D4xC12)288,705

Non-split extensions G=N.Q with N=C3 and Q=D4xC12
extensionφ:Q→Aut NdρLabelID
C3.(D4xC12) = D4xC36central extension (φ=1)144C3.(D4xC12)288,168

׿
x
:
Z
F
o
wr
Q
<