Extensions 1→N→G→Q→1 with N=C2xC8 and Q=C18

Direct product G=NxQ with N=C2xC8 and Q=C18
dρLabelID
C22xC72288C2^2xC72288,179

Semidirect products G=N:Q with N=C2xC8 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C2xC8):1C18 = C9xC22:C8φ: C18/C9C2 ⊆ Aut C2xC8144(C2xC8):1C18288,48
(C2xC8):2C18 = C9xD4:C4φ: C18/C9C2 ⊆ Aut C2xC8144(C2xC8):2C18288,52
(C2xC8):3C18 = D8xC18φ: C18/C9C2 ⊆ Aut C2xC8144(C2xC8):3C18288,182
(C2xC8):4C18 = C9xC4oD8φ: C18/C9C2 ⊆ Aut C2xC81442(C2xC8):4C18288,185
(C2xC8):5C18 = SD16xC18φ: C18/C9C2 ⊆ Aut C2xC8144(C2xC8):5C18288,183
(C2xC8):6C18 = M4(2)xC18φ: C18/C9C2 ⊆ Aut C2xC8144(C2xC8):6C18288,180
(C2xC8):7C18 = C9xC8oD4φ: C18/C9C2 ⊆ Aut C2xC81442(C2xC8):7C18288,181

Non-split extensions G=N.Q with N=C2xC8 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C2xC8).1C18 = C9xQ8:C4φ: C18/C9C2 ⊆ Aut C2xC8288(C2xC8).1C18288,53
(C2xC8).2C18 = C9xC4:C8φ: C18/C9C2 ⊆ Aut C2xC8288(C2xC8).2C18288,55
(C2xC8).3C18 = C9xC2.D8φ: C18/C9C2 ⊆ Aut C2xC8288(C2xC8).3C18288,57
(C2xC8).4C18 = Q16xC18φ: C18/C9C2 ⊆ Aut C2xC8288(C2xC8).4C18288,184
(C2xC8).5C18 = C9xC8.C4φ: C18/C9C2 ⊆ Aut C2xC81442(C2xC8).5C18288,58
(C2xC8).6C18 = C9xC4.Q8φ: C18/C9C2 ⊆ Aut C2xC8288(C2xC8).6C18288,56
(C2xC8).7C18 = C9xC8:C4φ: C18/C9C2 ⊆ Aut C2xC8288(C2xC8).7C18288,47
(C2xC8).8C18 = C9xM5(2)φ: C18/C9C2 ⊆ Aut C2xC81442(C2xC8).8C18288,60

׿
x
:
Z
F
o
wr
Q
<