Extensions 1→N→G→Q→1 with N=C18 and Q=C2xC8

Direct product G=NxQ with N=C18 and Q=C2xC8
dρLabelID
C22xC72288C2^2xC72288,179

Semidirect products G=N:Q with N=C18 and Q=C2xC8
extensionφ:Q→Aut NdρLabelID
C18:1(C2xC8) = C2xC8xD9φ: C2xC8/C8C2 ⊆ Aut C18144C18:1(C2xC8)288,110
C18:2(C2xC8) = C22xC9:C8φ: C2xC8/C2xC4C2 ⊆ Aut C18288C18:2(C2xC8)288,130

Non-split extensions G=N.Q with N=C18 and Q=C2xC8
extensionφ:Q→Aut NdρLabelID
C18.1(C2xC8) = C16xD9φ: C2xC8/C8C2 ⊆ Aut C181442C18.1(C2xC8)288,4
C18.2(C2xC8) = C16:D9φ: C2xC8/C8C2 ⊆ Aut C181442C18.2(C2xC8)288,5
C18.3(C2xC8) = C8xDic9φ: C2xC8/C8C2 ⊆ Aut C18288C18.3(C2xC8)288,21
C18.4(C2xC8) = Dic9:C8φ: C2xC8/C8C2 ⊆ Aut C18288C18.4(C2xC8)288,22
C18.5(C2xC8) = D18:C8φ: C2xC8/C8C2 ⊆ Aut C18144C18.5(C2xC8)288,27
C18.6(C2xC8) = C4xC9:C8φ: C2xC8/C2xC4C2 ⊆ Aut C18288C18.6(C2xC8)288,9
C18.7(C2xC8) = C36:C8φ: C2xC8/C2xC4C2 ⊆ Aut C18288C18.7(C2xC8)288,11
C18.8(C2xC8) = C2xC9:C16φ: C2xC8/C2xC4C2 ⊆ Aut C18288C18.8(C2xC8)288,18
C18.9(C2xC8) = C36.C8φ: C2xC8/C2xC4C2 ⊆ Aut C181442C18.9(C2xC8)288,19
C18.10(C2xC8) = C36.55D4φ: C2xC8/C2xC4C2 ⊆ Aut C18144C18.10(C2xC8)288,37
C18.11(C2xC8) = C9xC22:C8central extension (φ=1)144C18.11(C2xC8)288,48
C18.12(C2xC8) = C9xC4:C8central extension (φ=1)288C18.12(C2xC8)288,55
C18.13(C2xC8) = C9xM5(2)central extension (φ=1)1442C18.13(C2xC8)288,60

׿
x
:
Z
F
o
wr
Q
<