Extensions 1→N→G→Q→1 with N=D4xC3xC6 and Q=C2

Direct product G=NxQ with N=D4xC3xC6 and Q=C2
dρLabelID
D4xC62144D4xC6^2288,1019

Semidirect products G=N:Q with N=D4xC3xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC3xC6):1C2 = C6xD4:S3φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6):1C2288,702
(D4xC3xC6):2C2 = C3xD12:6C22φ: C2/C1C2 ⊆ Out D4xC3xC6244(D4xC3xC6):2C2288,703
(D4xC3xC6):3C2 = C3xD6:3D4φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6):3C2288,709
(D4xC3xC6):4C2 = C3xC12:3D4φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6):4C2288,711
(D4xC3xC6):5C2 = C2xC32:7D8φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):5C2288,788
(D4xC3xC6):6C2 = C62.131D4φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6):6C2288,789
(D4xC3xC6):7C2 = C62.256C23φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):7C2288,795
(D4xC3xC6):8C2 = C62.258C23φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):8C2288,797
(D4xC3xC6):9C2 = S3xC6xD4φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6):9C2288,992
(D4xC3xC6):10C2 = C6xD4:2S3φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6):10C2288,993
(D4xC3xC6):11C2 = C3xD4:6D6φ: C2/C1C2 ⊆ Out D4xC3xC6244(D4xC3xC6):11C2288,994
(D4xC3xC6):12C2 = C2xD4xC3:S3φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6):12C2288,1007
(D4xC3xC6):13C2 = C2xC12.D6φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):13C2288,1008
(D4xC3xC6):14C2 = C32:82+ 1+4φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6):14C2288,1009
(D4xC3xC6):15C2 = C3xC23:2D6φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6):15C2288,708
(D4xC3xC6):16C2 = C3xC23.14D6φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6):16C2288,710
(D4xC3xC6):17C2 = C62:13D4φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6):17C2288,794
(D4xC3xC6):18C2 = C62:14D4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):18C2288,796
(D4xC3xC6):19C2 = C32xC22wrC2φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6):19C2288,817
(D4xC3xC6):20C2 = C32xC4:D4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):20C2288,818
(D4xC3xC6):21C2 = C32xC4:1D4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):21C2288,824
(D4xC3xC6):22C2 = D8xC3xC6φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6):22C2288,829
(D4xC3xC6):23C2 = C32xC8:C22φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6):23C2288,833
(D4xC3xC6):24C2 = C32x2+ 1+4φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6):24C2288,1022
(D4xC3xC6):25C2 = C4oD4xC3xC6φ: trivial image144(D4xC3xC6):25C2288,1021

Non-split extensions G=N.Q with N=D4xC3xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC3xC6).1C2 = C3xD4:Dic3φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6).1C2288,266
(D4xC3xC6).2C2 = C3xC12.D4φ: C2/C1C2 ⊆ Out D4xC3xC6244(D4xC3xC6).2C2288,267
(D4xC3xC6).3C2 = C62.116D4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).3C2288,307
(D4xC3xC6).4C2 = (C6xD4).S3φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6).4C2288,308
(D4xC3xC6).5C2 = C6xD4.S3φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6).5C2288,704
(D4xC3xC6).6C2 = C3xD4xDic3φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6).6C2288,705
(D4xC3xC6).7C2 = C3xC23.12D6φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6).7C2288,707
(D4xC3xC6).8C2 = C2xC32:9SD16φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).8C2288,790
(D4xC3xC6).9C2 = D4xC3:Dic3φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).9C2288,791
(D4xC3xC6).10C2 = C62.254C23φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).10C2288,793
(D4xC3xC6).11C2 = C3xC23.7D6φ: C2/C1C2 ⊆ Out D4xC3xC6244(D4xC3xC6).11C2288,268
(D4xC3xC6).12C2 = C62.38D4φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6).12C2288,309
(D4xC3xC6).13C2 = C32xC23:C4φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6).13C2288,317
(D4xC3xC6).14C2 = C32xC4.D4φ: C2/C1C2 ⊆ Out D4xC3xC672(D4xC3xC6).14C2288,318
(D4xC3xC6).15C2 = C32xD4:C4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).15C2288,320
(D4xC3xC6).16C2 = C3xC23.23D6φ: C2/C1C2 ⊆ Out D4xC3xC648(D4xC3xC6).16C2288,706
(D4xC3xC6).17C2 = C62.72D4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).17C2288,792
(D4xC3xC6).18C2 = C32xC22.D4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).18C2288,820
(D4xC3xC6).19C2 = C32xC4.4D4φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).19C2288,821
(D4xC3xC6).20C2 = SD16xC3xC6φ: C2/C1C2 ⊆ Out D4xC3xC6144(D4xC3xC6).20C2288,830
(D4xC3xC6).21C2 = D4xC3xC12φ: trivial image144(D4xC3xC6).21C2288,815

׿
x
:
Z
F
o
wr
Q
<