Extensions 1→N→G→Q→1 with N=C2xS3wrC2 and Q=C2

Direct product G=NxQ with N=C2xS3wrC2 and Q=C2
dρLabelID
C22xS3wrC224C2^2xS3wrC2288,1031

Semidirect products G=N:Q with N=C2xS3wrC2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3wrC2):1C2 = S32:D4φ: C2/C1C2 ⊆ Out C2xS3wrC2244(C2xS3wrC2):1C2288,878
(C2xS3wrC2):2C2 = C4:S3wrC2φ: C2/C1C2 ⊆ Out C2xS3wrC2248+(C2xS3wrC2):2C2288,879
(C2xS3wrC2):3C2 = D6wrC2φ: C2/C1C2 ⊆ Out C2xS3wrC2124+(C2xS3wrC2):3C2288,889
(C2xS3wrC2):4C2 = C62:D4φ: C2/C1C2 ⊆ Out C2xS3wrC2248+(C2xS3wrC2):4C2288,890

Non-split extensions G=N.Q with N=C2xS3wrC2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3wrC2).1C2 = C2.AΓL1(F9)φ: C2/C1C2 ⊆ Out C2xS3wrC2248+(C2xS3wrC2).1C2288,841
(C2xS3wrC2).2C2 = C2xAΓL1(F9)φ: C2/C1C2 ⊆ Out C2xS3wrC2188+(C2xS3wrC2).2C2288,1027
(C2xS3wrC2).3C2 = C4xS3wrC2φ: trivial image244(C2xS3wrC2).3C2288,877

׿
x
:
Z
F
o
wr
Q
<