Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3:4D4

Direct product G=NxQ with N=C3 and Q=Dic3:4D4
dρLabelID
C3xDic3:4D448C3xDic3:4D4288,652

Semidirect products G=N:Q with N=C3 and Q=Dic3:4D4
extensionφ:Q→Aut NdρLabelID
C3:1(Dic3:4D4) = Dic3:4D12φ: Dic3:4D4/C4xDic3C2 ⊆ Aut C348C3:1(Dic3:4D4)288,528
C3:2(Dic3:4D4) = C62.51C23φ: Dic3:4D4/Dic3:C4C2 ⊆ Aut C348C3:2(Dic3:4D4)288,529
C3:3(Dic3:4D4) = C62.72C23φ: Dic3:4D4/D6:C4C2 ⊆ Aut C396C3:3(Dic3:4D4)288,550
C3:4(Dic3:4D4) = C62.225C23φ: Dic3:4D4/C3xC22:C4C2 ⊆ Aut C3144C3:4(Dic3:4D4)288,738
C3:5(Dic3:4D4) = C62.49C23φ: Dic3:4D4/S3xC2xC4C2 ⊆ Aut C396C3:5(Dic3:4D4)288,527
C3:6(Dic3:4D4) = C62.94C23φ: Dic3:4D4/C22xDic3C2 ⊆ Aut C348C3:6(Dic3:4D4)288,600
C3:7(Dic3:4D4) = C62.115C23φ: Dic3:4D4/C2xC3:D4C2 ⊆ Aut C348C3:7(Dic3:4D4)288,621

Non-split extensions G=N.Q with N=C3 and Q=Dic3:4D4
extensionφ:Q→Aut NdρLabelID
C3.(Dic3:4D4) = Dic9:4D4φ: Dic3:4D4/C3xC22:C4C2 ⊆ Aut C3144C3.(Dic3:4D4)288,91

׿
x
:
Z
F
o
wr
Q
<