Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C3:Dic3

Direct product G=NxQ with N=C2xC4 and Q=C3:Dic3
dρLabelID
C2xC4xC3:Dic3288C2xC4xC3:Dic3288,779

Semidirect products G=N:Q with N=C2xC4 and Q=C3:Dic3
extensionφ:Q→Aut NdρLabelID
(C2xC4):(C3:Dic3) = C62.38D4φ: C3:Dic3/C32C4 ⊆ Aut C2xC472(C2xC4):(C3:Dic3)288,309
(C2xC4):2(C3:Dic3) = C62.15Q8φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4288(C2xC4):2(C3:Dic3)288,306
(C2xC4):3(C3:Dic3) = C2xC12:Dic3φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4288(C2xC4):3(C3:Dic3)288,782
(C2xC4):4(C3:Dic3) = C62.247C23φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4144(C2xC4):4(C3:Dic3)288,783

Non-split extensions G=N.Q with N=C2xC4 and Q=C3:Dic3
extensionφ:Q→Aut NdρLabelID
(C2xC4).(C3:Dic3) = (C6xC12).C4φ: C3:Dic3/C32C4 ⊆ Aut C2xC4144(C2xC4).(C3:Dic3)288,311
(C2xC4).2(C3:Dic3) = C122.C2φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).2(C3:Dic3)288,278
(C2xC4).3(C3:Dic3) = C62:7C8φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).3(C3:Dic3)288,305
(C2xC4).4(C3:Dic3) = C12.57D12φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4288(C2xC4).4(C3:Dic3)288,279
(C2xC4).5(C3:Dic3) = C24.94D6φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).5(C3:Dic3)288,287
(C2xC4).6(C3:Dic3) = C2xC12.58D6φ: C3:Dic3/C3xC6C2 ⊆ Aut C2xC4144(C2xC4).6(C3:Dic3)288,778
(C2xC4).7(C3:Dic3) = C4xC32:4C8central extension (φ=1)288(C2xC4).7(C3:Dic3)288,277
(C2xC4).8(C3:Dic3) = C2xC24.S3central extension (φ=1)288(C2xC4).8(C3:Dic3)288,286
(C2xC4).9(C3:Dic3) = C22xC32:4C8central extension (φ=1)288(C2xC4).9(C3:Dic3)288,777

׿
x
:
Z
F
o
wr
Q
<