Extensions 1→N→G→Q→1 with N=D6 and Q=C4xS3

Direct product G=NxQ with N=D6 and Q=C4xS3
dρLabelID
S32xC2xC448S3^2xC2xC4288,950

Semidirect products G=N:Q with N=D6 and Q=C4xS3
extensionφ:Q→Out NdρLabelID
D6:1(C4xS3) = Dic3:4D12φ: C4xS3/Dic3C2 ⊆ Out D648D6:1(C4xS3)288,528
D6:2(C4xS3) = C62.51C23φ: C4xS3/Dic3C2 ⊆ Out D648D6:2(C4xS3)288,529
D6:3(C4xS3) = C62.72C23φ: C4xS3/Dic3C2 ⊆ Out D696D6:3(C4xS3)288,550
D6:4(C4xS3) = C62.49C23φ: C4xS3/C12C2 ⊆ Out D696D6:4(C4xS3)288,527
D6:5(C4xS3) = C4xD6:S3φ: C4xS3/C12C2 ⊆ Out D696D6:5(C4xS3)288,549
D6:6(C4xS3) = C4xC3:D12φ: C4xS3/C12C2 ⊆ Out D648D6:6(C4xS3)288,551
D6:7(C4xS3) = C62.74C23φ: C4xS3/C12C2 ⊆ Out D648D6:7(C4xS3)288,552
D6:8(C4xS3) = S3xD6:C4φ: C4xS3/D6C2 ⊆ Out D648D6:8(C4xS3)288,568
D6:9(C4xS3) = C62.91C23φ: C4xS3/D6C2 ⊆ Out D648D6:9(C4xS3)288,569

Non-split extensions G=N.Q with N=D6 and Q=C4xS3
extensionφ:Q→Out NdρLabelID
D6.1(C4xS3) = C24.D6φ: C4xS3/Dic3C2 ⊆ Out D6484D6.1(C4xS3)288,453
D6.2(C4xS3) = C24.63D6φ: C4xS3/C12C2 ⊆ Out D6484D6.2(C4xS3)288,451
D6.3(C4xS3) = C24.64D6φ: C4xS3/C12C2 ⊆ Out D6484D6.3(C4xS3)288,452
D6.4(C4xS3) = S3xC8:S3φ: C4xS3/D6C2 ⊆ Out D6484D6.4(C4xS3)288,438
D6.5(C4xS3) = C24:D6φ: C4xS3/D6C2 ⊆ Out D6484D6.5(C4xS3)288,439
D6.6(C4xS3) = C62.47C23φ: C4xS3/D6C2 ⊆ Out D696D6.6(C4xS3)288,525
D6.7(C4xS3) = C62.48C23φ: C4xS3/D6C2 ⊆ Out D696D6.7(C4xS3)288,526
D6.8(C4xS3) = S32xC8φ: trivial image484D6.8(C4xS3)288,437
D6.9(C4xS3) = C4xS3xDic3φ: trivial image96D6.9(C4xS3)288,523
D6.10(C4xS3) = S3xDic3:C4φ: trivial image96D6.10(C4xS3)288,524

׿
x
:
Z
F
o
wr
Q
<