Extensions 1→N→G→Q→1 with N=Dic3xC13 and Q=C2

Direct product G=NxQ with N=Dic3xC13 and Q=C2
dρLabelID
Dic3xC26312Dic3xC26312,35

Semidirect products G=N:Q with N=Dic3xC13 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xC13):1C2 = Dic3xD13φ: C2/C1C2 ⊆ Out Dic3xC131564-(Dic3xC13):1C2312,15
(Dic3xC13):2C2 = D78.C2φ: C2/C1C2 ⊆ Out Dic3xC131564+(Dic3xC13):2C2312,17
(Dic3xC13):3C2 = C3:D52φ: C2/C1C2 ⊆ Out Dic3xC131564+(Dic3xC13):3C2312,19
(Dic3xC13):4C2 = C13xC3:D4φ: C2/C1C2 ⊆ Out Dic3xC131562(Dic3xC13):4C2312,36
(Dic3xC13):5C2 = S3xC52φ: trivial image1562(Dic3xC13):5C2312,33

Non-split extensions G=N.Q with N=Dic3xC13 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xC13).1C2 = C39:Q8φ: C2/C1C2 ⊆ Out Dic3xC133124-(Dic3xC13).1C2312,21
(Dic3xC13).2C2 = C13xDic6φ: C2/C1C2 ⊆ Out Dic3xC133122(Dic3xC13).2C2312,32

׿
x
:
Z
F
o
wr
Q
<