Extensions 1→N→G→Q→1 with N=C26 and Q=C2xC6

Direct product G=NxQ with N=C26 and Q=C2xC6
dρLabelID
C22xC78312C2^2xC78312,61

Semidirect products G=N:Q with N=C26 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C26:(C2xC6) = C22xC13:C6φ: C2xC6/C2C6 ⊆ Aut C2652C26:(C2xC6)312,49
C26:2(C2xC6) = C23xC13:C3φ: C2xC6/C22C3 ⊆ Aut C26104C26:2(C2xC6)312,55
C26:3(C2xC6) = C2xC6xD13φ: C2xC6/C6C2 ⊆ Aut C26156C26:3(C2xC6)312,58

Non-split extensions G=N.Q with N=C26 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C26.1(C2xC6) = Dic26:C3φ: C2xC6/C2C6 ⊆ Aut C261046-C26.1(C2xC6)312,8
C26.2(C2xC6) = C4xC13:C6φ: C2xC6/C2C6 ⊆ Aut C26526C26.2(C2xC6)312,9
C26.3(C2xC6) = D52:C3φ: C2xC6/C2C6 ⊆ Aut C26526+C26.3(C2xC6)312,10
C26.4(C2xC6) = C2xC26.C6φ: C2xC6/C2C6 ⊆ Aut C26104C26.4(C2xC6)312,11
C26.5(C2xC6) = D26:C6φ: C2xC6/C2C6 ⊆ Aut C26526C26.5(C2xC6)312,12
C26.6(C2xC6) = C2xC4xC13:C3φ: C2xC6/C22C3 ⊆ Aut C26104C26.6(C2xC6)312,22
C26.7(C2xC6) = D4xC13:C3φ: C2xC6/C22C3 ⊆ Aut C26526C26.7(C2xC6)312,23
C26.8(C2xC6) = Q8xC13:C3φ: C2xC6/C22C3 ⊆ Aut C261046C26.8(C2xC6)312,24
C26.9(C2xC6) = C3xDic26φ: C2xC6/C6C2 ⊆ Aut C263122C26.9(C2xC6)312,27
C26.10(C2xC6) = C12xD13φ: C2xC6/C6C2 ⊆ Aut C261562C26.10(C2xC6)312,28
C26.11(C2xC6) = C3xD52φ: C2xC6/C6C2 ⊆ Aut C261562C26.11(C2xC6)312,29
C26.12(C2xC6) = C6xDic13φ: C2xC6/C6C2 ⊆ Aut C26312C26.12(C2xC6)312,30
C26.13(C2xC6) = C3xC13:D4φ: C2xC6/C6C2 ⊆ Aut C261562C26.13(C2xC6)312,31
C26.14(C2xC6) = D4xC39central extension (φ=1)1562C26.14(C2xC6)312,43
C26.15(C2xC6) = Q8xC39central extension (φ=1)3122C26.15(C2xC6)312,44

׿
x
:
Z
F
o
wr
Q
<