extension | φ:Q→Aut N | d | ρ | Label | ID |
C26.1(C2xC6) = Dic26:C3 | φ: C2xC6/C2 → C6 ⊆ Aut C26 | 104 | 6- | C26.1(C2xC6) | 312,8 |
C26.2(C2xC6) = C4xC13:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C26 | 52 | 6 | C26.2(C2xC6) | 312,9 |
C26.3(C2xC6) = D52:C3 | φ: C2xC6/C2 → C6 ⊆ Aut C26 | 52 | 6+ | C26.3(C2xC6) | 312,10 |
C26.4(C2xC6) = C2xC26.C6 | φ: C2xC6/C2 → C6 ⊆ Aut C26 | 104 | | C26.4(C2xC6) | 312,11 |
C26.5(C2xC6) = D26:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C26 | 52 | 6 | C26.5(C2xC6) | 312,12 |
C26.6(C2xC6) = C2xC4xC13:C3 | φ: C2xC6/C22 → C3 ⊆ Aut C26 | 104 | | C26.6(C2xC6) | 312,22 |
C26.7(C2xC6) = D4xC13:C3 | φ: C2xC6/C22 → C3 ⊆ Aut C26 | 52 | 6 | C26.7(C2xC6) | 312,23 |
C26.8(C2xC6) = Q8xC13:C3 | φ: C2xC6/C22 → C3 ⊆ Aut C26 | 104 | 6 | C26.8(C2xC6) | 312,24 |
C26.9(C2xC6) = C3xDic26 | φ: C2xC6/C6 → C2 ⊆ Aut C26 | 312 | 2 | C26.9(C2xC6) | 312,27 |
C26.10(C2xC6) = C12xD13 | φ: C2xC6/C6 → C2 ⊆ Aut C26 | 156 | 2 | C26.10(C2xC6) | 312,28 |
C26.11(C2xC6) = C3xD52 | φ: C2xC6/C6 → C2 ⊆ Aut C26 | 156 | 2 | C26.11(C2xC6) | 312,29 |
C26.12(C2xC6) = C6xDic13 | φ: C2xC6/C6 → C2 ⊆ Aut C26 | 312 | | C26.12(C2xC6) | 312,30 |
C26.13(C2xC6) = C3xC13:D4 | φ: C2xC6/C6 → C2 ⊆ Aut C26 | 156 | 2 | C26.13(C2xC6) | 312,31 |
C26.14(C2xC6) = D4xC39 | central extension (φ=1) | 156 | 2 | C26.14(C2xC6) | 312,43 |
C26.15(C2xC6) = Q8xC39 | central extension (φ=1) | 312 | 2 | C26.15(C2xC6) | 312,44 |