Extensions 1→N→G→Q→1 with N=Q8xC2xC10 and Q=C2

Direct product G=NxQ with N=Q8xC2xC10 and Q=C2
dρLabelID
Q8xC22xC10320Q8xC2^2xC10320,1630

Semidirect products G=N:Q with N=Q8xC2xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC2xC10):1C2 = (C5xQ8):13D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):1C2320,854
(Q8xC2xC10):2C2 = C22xQ8:D5φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):2C2320,1479
(Q8xC2xC10):3C2 = C2xC20.C23φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):3C2320,1480
(Q8xC2xC10):4C2 = C2xD10:3Q8φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):4C2320,1485
(Q8xC2xC10):5C2 = C2xC20.23D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):5C2320,1486
(Q8xC2xC10):6C2 = Q8xC5:D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):6C2320,1487
(Q8xC2xC10):7C2 = C10.442- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):7C2320,1488
(Q8xC2xC10):8C2 = C10.452- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):8C2320,1489
(Q8xC2xC10):9C2 = C22xQ8xD5φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):9C2320,1615
(Q8xC2xC10):10C2 = C22xQ8:2D5φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):10C2320,1616
(Q8xC2xC10):11C2 = C2xQ8.10D10φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):11C2320,1617
(Q8xC2xC10):12C2 = (C22xD5):Q8φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):12C2320,858
(Q8xC2xC10):13C2 = C5xC23:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):13C2320,894
(Q8xC2xC10):14C2 = C5xQ8:D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):14C2320,949
(Q8xC2xC10):15C2 = C10xC22:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):15C2320,1525
(Q8xC2xC10):16C2 = C10xC4.4D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):16C2320,1528
(Q8xC2xC10):17C2 = C5xC23.38C23φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):17C2320,1538
(Q8xC2xC10):18C2 = C5xQ8:5D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):18C2320,1550
(Q8xC2xC10):19C2 = C5xD4xQ8φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):19C2320,1551
(Q8xC2xC10):20C2 = SD16xC2xC10φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):20C2320,1572
(Q8xC2xC10):21C2 = C10xC8.C22φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):21C2320,1576
(Q8xC2xC10):22C2 = C10x2- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10):22C2320,1633
(Q8xC2xC10):23C2 = C4oD4xC2xC10φ: trivial image160(Q8xC2xC10):23C2320,1631

Non-split extensions G=N.Q with N=Q8xC2xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC2xC10).1C2 = C2xQ8:Dic5φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).1C2320,851
(Q8xC2xC10).2C2 = (Q8xC10):16C4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).2C2320,852
(Q8xC2xC10).3C2 = C2xC20.10D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).3C2320,853
(Q8xC2xC10).4C2 = (C2xC10):8Q16φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).4C2320,855
(Q8xC2xC10).5C2 = (Q8xC10):17C4φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).5C2320,857
(Q8xC2xC10).6C2 = C22xC5:Q16φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).6C2320,1481
(Q8xC2xC10).7C2 = C2xDic5:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).7C2320,1482
(Q8xC2xC10).8C2 = C2xQ8xDic5φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).8C2320,1483
(Q8xC2xC10).9C2 = C10.422- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).9C2320,1484
(Q8xC2xC10).10C2 = C10.C22wrC2φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).10C2320,856
(Q8xC2xC10).11C2 = C5xC23.67C23φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).11C2320,892
(Q8xC2xC10).12C2 = C5xC23.78C23φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).12C2320,896
(Q8xC2xC10).13C2 = C10xC4.10D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).13C2320,913
(Q8xC2xC10).14C2 = C10xQ8:C4φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).14C2320,916
(Q8xC2xC10).15C2 = C5xC23.38D4φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).15C2320,920
(Q8xC2xC10).16C2 = C5xC22:Q16φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).16C2320,952
(Q8xC2xC10).17C2 = C5xC23.32C23φ: C2/C1C2 ⊆ Out Q8xC2xC10160(Q8xC2xC10).17C2320,1521
(Q8xC2xC10).18C2 = C10xC4:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).18C2320,1533
(Q8xC2xC10).19C2 = Q16xC2xC10φ: C2/C1C2 ⊆ Out Q8xC2xC10320(Q8xC2xC10).19C2320,1573
(Q8xC2xC10).20C2 = Q8xC2xC20φ: trivial image320(Q8xC2xC10).20C2320,1518

׿
x
:
Z
F
o
wr
Q
<