Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC4xD5

Direct product G=NxQ with N=C4 and Q=C2xC4xD5
dρLabelID
D5xC2xC42160D5xC2xC4^2320,1143

Semidirect products G=N:Q with N=C4 and Q=C2xC4xD5
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC4xD5) = C4xD4xD5φ: C2xC4xD5/C4xD5C2 ⊆ Aut C480C4:1(C2xC4xD5)320,1216
C4:2(C2xC4xD5) = C2xD20:8C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4:2(C2xC4xD5)320,1175
C4:3(C2xC4xD5) = C2xC4xD20φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4:3(C2xC4xD5)320,1145
C4:4(C2xC4xD5) = C2xD5xC4:C4φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4:4(C2xC4xD5)320,1173

Non-split extensions G=N.Q with N=C4 and Q=C2xC4xD5
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC4xD5) = Dic5:4D8φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.1(C2xC4xD5)320,383
C4.2(C2xC4xD5) = D4.D5:5C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.2(C2xC4xD5)320,384
C4.3(C2xC4xD5) = Dic5:6SD16φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.3(C2xC4xD5)320,385
C4.4(C2xC4xD5) = D5xD4:C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C480C4.4(C2xC4xD5)320,396
C4.5(C2xC4xD5) = (D4xD5):C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C480C4.5(C2xC4xD5)320,397
C4.6(C2xC4xD5) = D4:(C4xD5)φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.6(C2xC4xD5)320,398
C4.7(C2xC4xD5) = D4:2D5:C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.7(C2xC4xD5)320,399
C4.8(C2xC4xD5) = D4:D5:6C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.8(C2xC4xD5)320,412
C4.9(C2xC4xD5) = Dic5:7SD16φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.9(C2xC4xD5)320,415
C4.10(C2xC4xD5) = C5:Q16:5C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4320C4.10(C2xC4xD5)320,416
C4.11(C2xC4xD5) = Dic5:4Q16φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4320C4.11(C2xC4xD5)320,417
C4.12(C2xC4xD5) = D5xQ8:C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.12(C2xC4xD5)320,428
C4.13(C2xC4xD5) = (Q8xD5):C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.13(C2xC4xD5)320,429
C4.14(C2xC4xD5) = Q8:(C4xD5)φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.14(C2xC4xD5)320,430
C4.15(C2xC4xD5) = Q8:2D5:C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.15(C2xC4xD5)320,431
C4.16(C2xC4xD5) = Q8:D5:6C4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.16(C2xC4xD5)320,444
C4.17(C2xC4xD5) = D5xC4wrC2φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4404C4.17(C2xC4xD5)320,447
C4.18(C2xC4xD5) = C42:D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4804C4.18(C2xC4xD5)320,448
C4.19(C2xC4xD5) = M4(2).22D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4804C4.19(C2xC4xD5)320,450
C4.20(C2xC4xD5) = C42.196D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4804C4.20(C2xC4xD5)320,451
C4.21(C2xC4xD5) = C4xD4:D5φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.21(C2xC4xD5)320,640
C4.22(C2xC4xD5) = C42.48D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.22(C2xC4xD5)320,641
C4.23(C2xC4xD5) = C4xD4.D5φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.23(C2xC4xD5)320,644
C4.24(C2xC4xD5) = C42.51D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.24(C2xC4xD5)320,645
C4.25(C2xC4xD5) = C4xQ8:D5φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.25(C2xC4xD5)320,652
C4.26(C2xC4xD5) = C42.56D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.26(C2xC4xD5)320,653
C4.27(C2xC4xD5) = C4xC5:Q16φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4320C4.27(C2xC4xD5)320,656
C4.28(C2xC4xD5) = C42.59D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4320C4.28(C2xC4xD5)320,657
C4.29(C2xC4xD5) = C40.93D4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4804C4.29(C2xC4xD5)320,771
C4.30(C2xC4xD5) = C40.50D4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4804C4.30(C2xC4xD5)320,772
C4.31(C2xC4xD5) = C4xD4:2D5φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.31(C2xC4xD5)320,1208
C4.32(C2xC4xD5) = C42:11D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C480C4.32(C2xC4xD5)320,1217
C4.33(C2xC4xD5) = C42.108D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.33(C2xC4xD5)320,1218
C4.34(C2xC4xD5) = C4xQ8xD5φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.34(C2xC4xD5)320,1243
C4.35(C2xC4xD5) = C42.125D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.35(C2xC4xD5)320,1244
C4.36(C2xC4xD5) = C4xQ8:2D5φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.36(C2xC4xD5)320,1245
C4.37(C2xC4xD5) = C42.126D10φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4160C4.37(C2xC4xD5)320,1246
C4.38(C2xC4xD5) = D5xC8oD4φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4804C4.38(C2xC4xD5)320,1421
C4.39(C2xC4xD5) = C20.72C24φ: C2xC4xD5/C4xD5C2 ⊆ Aut C4804C4.39(C2xC4xD5)320,1422
C4.40(C2xC4xD5) = Dic5:8SD16φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.40(C2xC4xD5)320,479
C4.41(C2xC4xD5) = Dic20:15C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4320C4.41(C2xC4xD5)320,480
C4.42(C2xC4xD5) = D40:15C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.42(C2xC4xD5)320,496
C4.43(C2xC4xD5) = D40:12C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.43(C2xC4xD5)320,499
C4.44(C2xC4xD5) = Dic5:5Q16φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4320C4.44(C2xC4xD5)320,500
C4.45(C2xC4xD5) = C40:21(C2xC4)φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.45(C2xC4xD5)320,516
C4.46(C2xC4xD5) = D40:16C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4804C4.46(C2xC4xD5)320,521
C4.47(C2xC4xD5) = D40:13C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4804C4.47(C2xC4xD5)320,522
C4.48(C2xC4xD5) = C2xD20:6C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.48(C2xC4xD5)320,592
C4.49(C2xC4xD5) = C4oD20:9C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.49(C2xC4xD5)320,593
C4.50(C2xC4xD5) = C2xC10.Q16φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4320C4.50(C2xC4xD5)320,596
C4.51(C2xC4xD5) = C4:C4:36D10φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C480C4.51(C2xC4xD5)320,628
C4.52(C2xC4xD5) = C4oD20:10C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.52(C2xC4xD5)320,629
C4.53(C2xC4xD5) = C4.(C2xD20)φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.53(C2xC4xD5)320,631
C4.54(C2xC4xD5) = C2xD20:7C4φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C480C4.54(C2xC4xD5)320,765
C4.55(C2xC4xD5) = C23.20D20φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4804C4.55(C2xC4xD5)320,766
C4.56(C2xC4xD5) = C2xDic5:3Q8φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4320C4.56(C2xC4xD5)320,1168
C4.57(C2xC4xD5) = C42.87D10φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C4160C4.57(C2xC4xD5)320,1188
C4.58(C2xC4xD5) = C42:7D10φ: C2xC4xD5/C2xDic5C2 ⊆ Aut C480C4.58(C2xC4xD5)320,1193
C4.59(C2xC4xD5) = C4xC40:C2φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.59(C2xC4xD5)320,318
C4.60(C2xC4xD5) = C4xD40φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.60(C2xC4xD5)320,319
C4.61(C2xC4xD5) = C4xDic20φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4320C4.61(C2xC4xD5)320,325
C4.62(C2xC4xD5) = D40:17C4φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4802C4.62(C2xC4xD5)320,327
C4.63(C2xC4xD5) = C42.16D10φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.63(C2xC4xD5)320,337
C4.64(C2xC4xD5) = D40:9C4φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.64(C2xC4xD5)320,338
C4.65(C2xC4xD5) = Dic20:9C4φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4320C4.65(C2xC4xD5)320,343
C4.66(C2xC4xD5) = D40:10C4φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4804C4.66(C2xC4xD5)320,344
C4.67(C2xC4xD5) = C2xD20:4C4φ: C2xC4xD5/C2xC20C2 ⊆ Aut C480C4.67(C2xC4xD5)320,554
C4.68(C2xC4xD5) = C42:4D10φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4804C4.68(C2xC4xD5)320,632
C4.69(C2xC4xD5) = C2xC20.44D4φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4320C4.69(C2xC4xD5)320,730
C4.70(C2xC4xD5) = C2xD20:5C4φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.70(C2xC4xD5)320,739
C4.71(C2xC4xD5) = C23.23D20φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.71(C2xC4xD5)320,740
C4.72(C2xC4xD5) = C23.46D20φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.72(C2xC4xD5)320,747
C4.73(C2xC4xD5) = C23.48D20φ: C2xC4xD5/C2xC20C2 ⊆ Aut C480C4.73(C2xC4xD5)320,758
C4.74(C2xC4xD5) = C23.49D20φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4160C4.74(C2xC4xD5)320,760
C4.75(C2xC4xD5) = C2xC4xDic10φ: C2xC4xD5/C2xC20C2 ⊆ Aut C4320C4.75(C2xC4xD5)320,1139
C4.76(C2xC4xD5) = D5xC4.Q8φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.76(C2xC4xD5)320,486
C4.77(C2xC4xD5) = (C8xD5):C4φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.77(C2xC4xD5)320,487
C4.78(C2xC4xD5) = C8:(C4xD5)φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.78(C2xC4xD5)320,488
C4.79(C2xC4xD5) = D5xC2.D8φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.79(C2xC4xD5)320,506
C4.80(C2xC4xD5) = C8.27(C4xD5)φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.80(C2xC4xD5)320,507
C4.81(C2xC4xD5) = C40:20(C2xC4)φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.81(C2xC4xD5)320,508
C4.82(C2xC4xD5) = D5xC8.C4φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4804C4.82(C2xC4xD5)320,519
C4.83(C2xC4xD5) = M4(2).25D10φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4804C4.83(C2xC4xD5)320,520
C4.84(C2xC4xD5) = C2xC10.D8φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4320C4.84(C2xC4xD5)320,589
C4.85(C2xC4xD5) = C2xC20.Q8φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4320C4.85(C2xC4xD5)320,590
C4.86(C2xC4xD5) = C20.47(C4:C4)φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.86(C2xC4xD5)320,591
C4.87(C2xC4xD5) = C20.64(C4:C4)φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.87(C2xC4xD5)320,622
C4.88(C2xC4xD5) = C20.76(C4:C4)φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.88(C2xC4xD5)320,625
C4.89(C2xC4xD5) = C2xC20.53D4φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.89(C2xC4xD5)320,750
C4.90(C2xC4xD5) = C23.Dic10φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4804C4.90(C2xC4xD5)320,751
C4.91(C2xC4xD5) = C2xC4:C4:7D5φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.91(C2xC4xD5)320,1174
C4.92(C2xC4xD5) = C10.82+ 1+4φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.92(C2xC4xD5)320,1176
C4.93(C2xC4xD5) = D5xC42:C2φ: C2xC4xD5/C22xD5C2 ⊆ Aut C480C4.93(C2xC4xD5)320,1192
C4.94(C2xC4xD5) = C42.91D10φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4160C4.94(C2xC4xD5)320,1195
C4.95(C2xC4xD5) = C40.47C23φ: C2xC4xD5/C22xD5C2 ⊆ Aut C4804C4.95(C2xC4xD5)320,1417
C4.96(C2xC4xD5) = D5xC4xC8central extension (φ=1)160C4.96(C2xC4xD5)320,311
C4.97(C2xC4xD5) = C4xC8:D5central extension (φ=1)160C4.97(C2xC4xD5)320,314
C4.98(C2xC4xD5) = D10.5C42central extension (φ=1)160C4.98(C2xC4xD5)320,316
C4.99(C2xC4xD5) = D5xC8:C4central extension (φ=1)160C4.99(C2xC4xD5)320,331
C4.100(C2xC4xD5) = D10.6C42central extension (φ=1)160C4.100(C2xC4xD5)320,334
C4.101(C2xC4xD5) = D10.7C42central extension (φ=1)160C4.101(C2xC4xD5)320,335
C4.102(C2xC4xD5) = D5xC2xC16central extension (φ=1)160C4.102(C2xC4xD5)320,526
C4.103(C2xC4xD5) = C2xC80:C2central extension (φ=1)160C4.103(C2xC4xD5)320,527
C4.104(C2xC4xD5) = D20.6C8central extension (φ=1)1602C4.104(C2xC4xD5)320,528
C4.105(C2xC4xD5) = D5xM5(2)central extension (φ=1)804C4.105(C2xC4xD5)320,533
C4.106(C2xC4xD5) = D20.5C8central extension (φ=1)1604C4.106(C2xC4xD5)320,534
C4.107(C2xC4xD5) = C2xC4xC5:2C8central extension (φ=1)320C4.107(C2xC4xD5)320,547
C4.108(C2xC4xD5) = C2xC42.D5central extension (φ=1)320C4.108(C2xC4xD5)320,548
C4.109(C2xC4xD5) = C4xC4.Dic5central extension (φ=1)160C4.109(C2xC4xD5)320,549
C4.110(C2xC4xD5) = C20.35C42central extension (φ=1)160C4.110(C2xC4xD5)320,624
C4.111(C2xC4xD5) = C2xC8xDic5central extension (φ=1)320C4.111(C2xC4xD5)320,725
C4.112(C2xC4xD5) = C2xC40:8C4central extension (φ=1)320C4.112(C2xC4xD5)320,727
C4.113(C2xC4xD5) = C20.42C42central extension (φ=1)160C4.113(C2xC4xD5)320,728
C4.114(C2xC4xD5) = M4(2)xDic5central extension (φ=1)160C4.114(C2xC4xD5)320,744
C4.115(C2xC4xD5) = C20.37C42central extension (φ=1)160C4.115(C2xC4xD5)320,749
C4.116(C2xC4xD5) = C2xC42:D5central extension (φ=1)160C4.116(C2xC4xD5)320,1144
C4.117(C2xC4xD5) = C4xC4oD20central extension (φ=1)160C4.117(C2xC4xD5)320,1146
C4.118(C2xC4xD5) = C42.188D10central extension (φ=1)160C4.118(C2xC4xD5)320,1194
C4.119(C2xC4xD5) = D5xC22xC8central extension (φ=1)160C4.119(C2xC4xD5)320,1408
C4.120(C2xC4xD5) = C22xC8:D5central extension (φ=1)160C4.120(C2xC4xD5)320,1409
C4.121(C2xC4xD5) = C2xD20.3C4central extension (φ=1)160C4.121(C2xC4xD5)320,1410
C4.122(C2xC4xD5) = C2xD5xM4(2)central extension (φ=1)80C4.122(C2xC4xD5)320,1415
C4.123(C2xC4xD5) = C2xD20.2C4central extension (φ=1)160C4.123(C2xC4xD5)320,1416

׿
x
:
Z
F
o
wr
Q
<