Extensions 1→N→G→Q→1 with N=C2xD20 and Q=C4

Direct product G=NxQ with N=C2xD20 and Q=C4
dρLabelID
C2xC4xD20160C2xC4xD20320,1145

Semidirect products G=N:Q with N=C2xD20 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xD20):1C4 = (C2xD20):C4φ: C4/C1C4 ⊆ Out C2xD2080(C2xD20):1C4320,9
(C2xD20):2C4 = C22.2D40φ: C4/C1C4 ⊆ Out C2xD2080(C2xD20):2C4320,28
(C2xD20):3C4 = C42:F5φ: C4/C1C4 ⊆ Out C2xD20404+(C2xD20):3C4320,191
(C2xD20):4C4 = C23.2D20φ: C4/C1C4 ⊆ Out C2xD20408+(C2xD20):4C4320,32
(C2xD20):5C4 = D10.1D8φ: C4/C1C4 ⊆ Out C2xD2080(C2xD20):5C4320,206
(C2xD20):6C4 = D5xC23:C4φ: C4/C1C4 ⊆ Out C2xD20408+(C2xD20):6C4320,370
(C2xD20):7C4 = (C2xF5):D4φ: C4/C1C4 ⊆ Out C2xD2040(C2xD20):7C4320,1117
(C2xD20):8C4 = C2xD20:C4φ: C4/C1C4 ⊆ Out C2xD2080(C2xD20):8C4320,1104
(C2xD20):9C4 = (D4xC10):C4φ: C4/C1C4 ⊆ Out C2xD20408+(C2xD20):9C4320,1105
(C2xD20):10C4 = C2.(D4xF5)φ: C4/C1C4 ⊆ Out C2xD2080(C2xD20):10C4320,1118
(C2xD20):11C4 = C2xQ8:2F5φ: C4/C1C4 ⊆ Out C2xD2080(C2xD20):11C4320,1121
(C2xD20):12C4 = (C2xQ8):6F5φ: C4/C1C4 ⊆ Out C2xD20808+(C2xD20):12C4320,1122
(C2xD20):13C4 = (C2xQ8):7F5φ: C4/C1C4 ⊆ Out C2xD20808+(C2xD20):13C4320,1123
(C2xD20):14C4 = C2xD4xF5φ: C4/C1C4 ⊆ Out C2xD2040(C2xD20):14C4320,1595
(C2xD20):15C4 = D10.C24φ: C4/C1C4 ⊆ Out C2xD20408+(C2xD20):15C4320,1596
(C2xD20):16C4 = (C2xC4):9D20φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20):16C4320,292
(C2xD20):17C4 = C2xD20:4C4φ: C4/C2C2 ⊆ Out C2xD2080(C2xD20):17C4320,554
(C2xD20):18C4 = (C2xC4):6D20φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20):18C4320,566
(C2xD20):19C4 = C2xD20:5C4φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20):19C4320,739
(C2xD20):20C4 = C2xD10.D4φ: C4/C2C2 ⊆ Out C2xD2080(C2xD20):20C4320,1082
(C2xD20):21C4 = C2xD20:6C4φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20):21C4320,592
(C2xD20):22C4 = (C2xD20):22C4φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20):22C4320,615
(C2xD20):23C4 = C4:C4:36D10φ: C4/C2C2 ⊆ Out C2xD2080(C2xD20):23C4320,628
(C2xD20):24C4 = C42:4D10φ: C4/C2C2 ⊆ Out C2xD20804(C2xD20):24C4320,632
(C2xD20):25C4 = (C2xD20):25C4φ: C4/C2C2 ⊆ Out C2xD20804(C2xD20):25C4320,633
(C2xD20):26C4 = C23.48D20φ: C4/C2C2 ⊆ Out C2xD2080(C2xD20):26C4320,758
(C2xD20):27C4 = C2xD20:7C4φ: C4/C2C2 ⊆ Out C2xD2080(C2xD20):27C4320,765
(C2xD20):28C4 = C23.20D20φ: C4/C2C2 ⊆ Out C2xD20804(C2xD20):28C4320,766
(C2xD20):29C4 = C2xD20:8C4φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20):29C4320,1175
(C2xD20):30C4 = C42:7D10φ: C4/C2C2 ⊆ Out C2xD2080(C2xD20):30C4320,1193

Non-split extensions G=N.Q with N=C2xD20 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xD20).1C4 = C42.D10φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).1C4320,22
(C2xD20).2C4 = C4.D40φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).2C4320,43
(C2xD20).3C4 = C42.2F5φ: C4/C1C4 ⊆ Out C2xD20804(C2xD20).3C4320,194
(C2xD20).4C4 = (C2xC4).D20φ: C4/C1C4 ⊆ Out C2xD20808+(C2xD20).4C4320,35
(C2xD20).5C4 = Dic5.SD16φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).5C4320,263
(C2xD20).6C4 = (C2xQ8).F5φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).6C4320,265
(C2xD20).7C4 = M4(2).21D10φ: C4/C1C4 ⊆ Out C2xD20808+(C2xD20).7C4320,378
(C2xD20).8C4 = D10:2M4(2)φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).8C4320,1042
(C2xD20).9C4 = (C2xQ8).5F5φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).9C4320,1125
(C2xD20).10C4 = D20:C8φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).10C4320,209
(C2xD20).11C4 = D20:2C8φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).11C4320,1040
(C2xD20).12C4 = C20:M4(2)φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).12C4320,1043
(C2xD20).13C4 = D5:(C4.D4)φ: C4/C1C4 ⊆ Out C2xD20408+(C2xD20).13C4320,1116
(C2xD20).14C4 = C2xQ8.F5φ: C4/C1C4 ⊆ Out C2xD20160(C2xD20).14C4320,1597
(C2xD20).15C4 = Dic5.20C24φ: C4/C1C4 ⊆ Out C2xD20808+(C2xD20).15C4320,1598
(C2xD20).16C4 = D20:3C8φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).16C4320,17
(C2xD20).17C4 = C8:6D20φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).17C4320,315
(C2xD20).18C4 = C8:9D20φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).18C4320,333
(C2xD20).19C4 = C22:C8:D5φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).19C4320,354
(C2xD20).20C4 = D10:5M4(2)φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).20C4320,463
(C2xD20).21C4 = (C22xC8):D5φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).21C4320,737
(C2xD20).22C4 = (C4xD5).D4φ: C4/C2C2 ⊆ Out C2xD20804(C2xD20).22C4320,1099
(C2xD20).23C4 = D20:4C8φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).23C4320,41
(C2xD20).24C4 = D20:5C8φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).24C4320,461
(C2xD20).25C4 = C20:6M4(2)φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).25C4320,465
(C2xD20).26C4 = C4.89(C2xD20)φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).26C4320,756
(C2xD20).27C4 = C2xC20.46D4φ: C4/C2C2 ⊆ Out C2xD2080(C2xD20).27C4320,757
(C2xD20).28C4 = C2xD20.2C4φ: C4/C2C2 ⊆ Out C2xD20160(C2xD20).28C4320,1416
(C2xD20).29C4 = C40.47C23φ: C4/C2C2 ⊆ Out C2xD20804(C2xD20).29C4320,1417
(C2xD20).30C4 = C8xD20φ: trivial image160(C2xD20).30C4320,313
(C2xD20).31C4 = C2xD20.3C4φ: trivial image160(C2xD20).31C4320,1410

׿
x
:
Z
F
o
wr
Q
<