Extensions 1→N→G→Q→1 with N=C20.10D4 and Q=C2

Direct product G=NxQ with N=C20.10D4 and Q=C2
dρLabelID
C2xC20.10D4160C2xC20.10D4320,853

Semidirect products G=N:Q with N=C20.10D4 and Q=C2
extensionφ:Q→Out NdρLabelID
C20.10D4:1C2 = (C2xC4).D20φ: C2/C1C2 ⊆ Out C20.10D4808+C20.10D4:1C2320,35
C20.10D4:2C2 = C42.Dic5φ: C2/C1C2 ⊆ Out C20.10D4804C20.10D4:2C2320,100
C20.10D4:3C2 = D5xC4.10D4φ: C2/C1C2 ⊆ Out C20.10D4808-C20.10D4:3C2320,377
C20.10D4:4C2 = M4(2).21D10φ: C2/C1C2 ⊆ Out C20.10D4808+C20.10D4:4C2320,378
C20.10D4:5C2 = D20.14D4φ: C2/C1C2 ⊆ Out C20.10D4804C20.10D4:5C2320,689
C20.10D4:6C2 = D20.15D4φ: C2/C1C2 ⊆ Out C20.10D4804C20.10D4:6C2320,722
C20.10D4:7C2 = C40.44D4φ: C2/C1C2 ⊆ Out C20.10D4804C20.10D4:7C2320,804
C20.10D4:8C2 = C40.29D4φ: C2/C1C2 ⊆ Out C20.10D41604C20.10D4:8C2320,819
C20.10D4:9C2 = M4(2).15D10φ: C2/C1C2 ⊆ Out C20.10D4808+C20.10D4:9C2320,830
C20.10D4:10C2 = M4(2).16D10φ: C2/C1C2 ⊆ Out C20.10D41608-C20.10D4:10C2320,831
C20.10D4:11C2 = 2- 1+4:2D5φ: C2/C1C2 ⊆ Out C20.10D4808+C20.10D4:11C2320,872
C20.10D4:12C2 = 2- 1+4.2D5φ: C2/C1C2 ⊆ Out C20.10D4808-C20.10D4:12C2320,873
C20.10D4:13C2 = (D4xC10).29C4φ: trivial image804C20.10D4:13C2320,864

Non-split extensions G=N.Q with N=C20.10D4 and Q=C2
extensionφ:Q→Out NdρLabelID
C20.10D4.1C2 = (C2xQ8).D10φ: C2/C1C2 ⊆ Out C20.10D4808-C20.10D4.1C2320,36
C20.10D4.2C2 = C42.3Dic5φ: C2/C1C2 ⊆ Out C20.10D4804C20.10D4.2C2320,106

׿
x
:
Z
F
o
wr
Q
<