Extensions 1→N→G→Q→1 with N=C4xC40 and Q=C2

Direct product G=NxQ with N=C4xC40 and Q=C2
dρLabelID
C2xC4xC40320C2xC4xC40320,903

Semidirect products G=N:Q with N=C4xC40 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4xC40):1C2 = D20:3C8φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):1C2320,17
(C4xC40):2C2 = C5xD4:C8φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):2C2320,130
(C4xC40):3C2 = C42.282D10φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):3C2320,312
(C4xC40):4C2 = C42.243D10φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):4C2320,317
(C4xC40):5C2 = C4.5D40φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):5C2320,321
(C4xC40):6C2 = C42.264D10φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):6C2320,324
(C4xC40):7C2 = C5xC42.12C4φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):7C2320,932
(C4xC40):8C2 = C5xC42.7C22φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):8C2320,934
(C4xC40):9C2 = D4xC40φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):9C2320,935
(C4xC40):10C2 = C5xC4.4D8φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):10C2320,987
(C4xC40):11C2 = C5xC42.78C22φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):11C2320,989
(C4xC40):12C2 = C4xD40φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):12C2320,319
(C4xC40):13C2 = C20:4D8φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):13C2320,322
(C4xC40):14C2 = C8.8D20φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):14C2320,323
(C4xC40):15C2 = D40:17C4φ: C2/C1C2 ⊆ Aut C4xC40802(C4xC40):15C2320,327
(C4xC40):16C2 = C4xC40:C2φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):16C2320,318
(C4xC40):17C2 = C8:5D20φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):17C2320,320
(C4xC40):18C2 = D5xC4xC8φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):18C2320,311
(C4xC40):19C2 = C8xD20φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):19C2320,313
(C4xC40):20C2 = C4xC8:D5φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):20C2320,314
(C4xC40):21C2 = C8:6D20φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):21C2320,315
(C4xC40):22C2 = D10.5C42φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):22C2320,316
(C4xC40):23C2 = D8xC20φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):23C2320,938
(C4xC40):24C2 = C5xC8:4D4φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):24C2320,994
(C4xC40):25C2 = C5xC8.12D4φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):25C2320,996
(C4xC40):26C2 = C5xC8oD8φ: C2/C1C2 ⊆ Aut C4xC40802(C4xC40):26C2320,944
(C4xC40):27C2 = SD16xC20φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):27C2320,939
(C4xC40):28C2 = C5xC8:5D4φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):28C2320,993
(C4xC40):29C2 = M4(2)xC20φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):29C2320,905
(C4xC40):30C2 = C5xC8o2M4(2)φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):30C2320,906
(C4xC40):31C2 = C5xC8:6D4φ: C2/C1C2 ⊆ Aut C4xC40160(C4xC40):31C2320,937

Non-split extensions G=N.Q with N=C4xC40 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4xC40).1C2 = C42.279D10φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).1C2320,12
(C4xC40).2C2 = Dic10:3C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).2C2320,14
(C4xC40).3C2 = C5xQ8:C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).3C2320,131
(C4xC40).4C2 = C5xC4:C16φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).4C2320,168
(C4xC40).5C2 = C20.14Q16φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).5C2320,308
(C4xC40).6C2 = Q8xC40φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).6C2320,946
(C4xC40).7C2 = C5xC4.SD16φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).7C2320,988
(C4xC40).8C2 = C40:5C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).8C2320,16
(C4xC40).9C2 = C40:8Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).9C2320,309
(C4xC40).10C2 = C4xDic20φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).10C2320,325
(C4xC40).11C2 = C20:4Q16φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).11C2320,326
(C4xC40).12C2 = C40.13Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).12C2320,310
(C4xC40).13C2 = C40.7C8φ: C2/C1C2 ⊆ Aut C4xC40802(C4xC40).13C2320,21
(C4xC40).14C2 = C40:6C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).14C2320,15
(C4xC40).15C2 = C40:9Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).15C2320,307
(C4xC40).16C2 = C8xC5:2C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).16C2320,11
(C4xC40).17C2 = C40:8C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).17C2320,13
(C4xC40).18C2 = C4xC5:2C16φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).18C2320,18
(C4xC40).19C2 = C40.10C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).19C2320,19
(C4xC40).20C2 = C20:3C16φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).20C2320,20
(C4xC40).21C2 = C8xDic10φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).21C2320,305
(C4xC40).22C2 = C40:11Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).22C2320,306
(C4xC40).23C2 = C5xC8:1C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).23C2320,140
(C4xC40).24C2 = Q16xC20φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).24C2320,940
(C4xC40).25C2 = C5xC4:Q16φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).25C2320,995
(C4xC40).26C2 = C5xC8:2Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).26C2320,1001
(C4xC40).27C2 = C5xC8.5Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).27C2320,1000
(C4xC40).28C2 = C5xC8.C8φ: C2/C1C2 ⊆ Aut C4xC40802(C4xC40).28C2320,169
(C4xC40).29C2 = C5xC8:2C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).29C2320,139
(C4xC40).30C2 = C5xC8:3Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).30C2320,999
(C4xC40).31C2 = C5xC8:C8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).31C2320,127
(C4xC40).32C2 = C5xC16:5C4φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).32C2320,151
(C4xC40).33C2 = C5xC8:4Q8φ: C2/C1C2 ⊆ Aut C4xC40320(C4xC40).33C2320,947

׿
x
:
Z
F
o
wr
Q
<