Extensions 1→N→G→Q→1 with N=C16 and Q=C2xC10

Direct product G=NxQ with N=C16 and Q=C2xC10
dρLabelID
C22xC80320C2^2xC80320,1003

Semidirect products G=N:Q with N=C16 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
C16:(C2xC10) = C5xC16:C22φ: C2xC10/C5C22 ⊆ Aut C16804C16:(C2xC10)320,1010
C16:2(C2xC10) = C10xD16φ: C2xC10/C10C2 ⊆ Aut C16160C16:2(C2xC10)320,1006
C16:3(C2xC10) = C10xSD32φ: C2xC10/C10C2 ⊆ Aut C16160C16:3(C2xC10)320,1007
C16:4(C2xC10) = C10xM5(2)φ: C2xC10/C10C2 ⊆ Aut C16160C16:4(C2xC10)320,1004

Non-split extensions G=N.Q with N=C16 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
C16.(C2xC10) = C5xQ32:C2φ: C2xC10/C5C22 ⊆ Aut C161604C16.(C2xC10)320,1011
C16.2(C2xC10) = C5xD32φ: C2xC10/C10C2 ⊆ Aut C161602C16.2(C2xC10)320,176
C16.3(C2xC10) = C5xSD64φ: C2xC10/C10C2 ⊆ Aut C161602C16.3(C2xC10)320,177
C16.4(C2xC10) = C5xQ64φ: C2xC10/C10C2 ⊆ Aut C163202C16.4(C2xC10)320,178
C16.5(C2xC10) = C10xQ32φ: C2xC10/C10C2 ⊆ Aut C16320C16.5(C2xC10)320,1008
C16.6(C2xC10) = C5xC4oD16φ: C2xC10/C10C2 ⊆ Aut C161602C16.6(C2xC10)320,1009
C16.7(C2xC10) = C5xM6(2)central extension (φ=1)1602C16.7(C2xC10)320,175
C16.8(C2xC10) = C5xD4oC16central extension (φ=1)1602C16.8(C2xC10)320,1005

׿
x
:
Z
F
o
wr
Q
<