Extensions 1→N→G→Q→1 with N=C5xD16 and Q=C2

Direct product G=NxQ with N=C5xD16 and Q=C2
dρLabelID
C10xD16160C10xD16320,1006

Semidirect products G=N:Q with N=C5xD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xD16):1C2 = C5:D32φ: C2/C1C2 ⊆ Out C5xD161604+(C5xD16):1C2320,77
(C5xD16):2C2 = D5xD16φ: C2/C1C2 ⊆ Out C5xD16804+(C5xD16):2C2320,537
(C5xD16):3C2 = D16:3D5φ: C2/C1C2 ⊆ Out C5xD161604-(C5xD16):3C2320,539
(C5xD16):4C2 = D16:D5φ: C2/C1C2 ⊆ Out C5xD16804(C5xD16):4C2320,538
(C5xD16):5C2 = C5xD32φ: C2/C1C2 ⊆ Out C5xD161602(C5xD16):5C2320,176
(C5xD16):6C2 = C5xC16:C22φ: C2/C1C2 ⊆ Out C5xD16804(C5xD16):6C2320,1010
(C5xD16):7C2 = C5xC4oD16φ: trivial image1602(C5xD16):7C2320,1009

Non-split extensions G=N.Q with N=C5xD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xD16).1C2 = D16.D5φ: C2/C1C2 ⊆ Out C5xD161604-(C5xD16).1C2320,78
(C5xD16).2C2 = C5xSD64φ: C2/C1C2 ⊆ Out C5xD161602(C5xD16).2C2320,177

׿
x
:
Z
F
o
wr
Q
<