Extensions 1→N→G→Q→1 with N=C5 and Q=C8o2M4(2)

Direct product G=NxQ with N=C5 and Q=C8o2M4(2)
dρLabelID
C5xC8o2M4(2)160C5xC8o2M4(2)320,906

Semidirect products G=N:Q with N=C5 and Q=C8o2M4(2)
extensionφ:Q→Aut NdρLabelID
C5:1(C8o2M4(2)) = Dic5.C42φ: C8o2M4(2)/C22:C4C4 ⊆ Aut C5160C5:1(C8o2M4(2))320,1029
C5:2(C8o2M4(2)) = D10.C42φ: C8o2M4(2)/C4:C4C4 ⊆ Aut C5160C5:2(C8o2M4(2))320,1039
C5:3(C8o2M4(2)) = C20.12C42φ: C8o2M4(2)/C2xC8C4 ⊆ Aut C5804C5:3(C8o2M4(2))320,1056
C5:4(C8o2M4(2)) = M4(2):5F5φ: C8o2M4(2)/M4(2)C4 ⊆ Aut C5808C5:4(C8o2M4(2))320,1066
C5:5(C8o2M4(2)) = D10.5C42φ: C8o2M4(2)/C4xC8C2 ⊆ Aut C5160C5:5(C8o2M4(2))320,316
C5:6(C8o2M4(2)) = D10.7C42φ: C8o2M4(2)/C8:C4C2 ⊆ Aut C5160C5:6(C8o2M4(2))320,335
C5:7(C8o2M4(2)) = C20.35C42φ: C8o2M4(2)/C42:C2C2 ⊆ Aut C5160C5:7(C8o2M4(2))320,624
C5:8(C8o2M4(2)) = C20.42C42φ: C8o2M4(2)/C22xC8C2 ⊆ Aut C5160C5:8(C8o2M4(2))320,728
C5:9(C8o2M4(2)) = C20.37C42φ: C8o2M4(2)/C2xM4(2)C2 ⊆ Aut C5160C5:9(C8o2M4(2))320,749


׿
x
:
Z
F
o
wr
Q
<