Extensions 1→N→G→Q→1 with N=C10xSD16 and Q=C2

Direct product G=NxQ with N=C10xSD16 and Q=C2
dρLabelID
SD16xC2xC10160SD16xC2xC10320,1572

Semidirect products G=N:Q with N=C10xSD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xSD16):1C2 = C40.44D4φ: C2/C1C2 ⊆ Out C10xSD16804(C10xSD16):1C2320,804
(C10xSD16):2C2 = D20.29D4φ: C2/C1C2 ⊆ Out C10xSD16804(C10xSD16):2C2320,1434
(C10xSD16):3C2 = C40:8D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):3C2320,801
(C10xSD16):4C2 = C40:9D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):4C2320,803
(C10xSD16):5C2 = C2xD40:C2φ: C2/C1C2 ⊆ Out C10xSD1680(C10xSD16):5C2320,1431
(C10xSD16):6C2 = C2xSD16:D5φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):6C2320,1432
(C10xSD16):7C2 = C40.43D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):7C2320,795
(C10xSD16):8C2 = C40:14D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):8C2320,798
(C10xSD16):9C2 = C40:15D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):9C2320,802
(C10xSD16):10C2 = C2xD5xSD16φ: C2/C1C2 ⊆ Out C10xSD1680(C10xSD16):10C2320,1430
(C10xSD16):11C2 = C2xSD16:3D5φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):11C2320,1433
(C10xSD16):12C2 = C5xC8:D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):12C2320,969
(C10xSD16):13C2 = C5xD4.3D4φ: C2/C1C2 ⊆ Out C10xSD16804(C10xSD16):13C2320,972
(C10xSD16):14C2 = C5xC8:3D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):14C2320,997
(C10xSD16):15C2 = C10xC8:C22φ: C2/C1C2 ⊆ Out C10xSD1680(C10xSD16):15C2320,1575
(C10xSD16):16C2 = C10xC8.C22φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):16C2320,1576
(C10xSD16):17C2 = C5xD4oSD16φ: C2/C1C2 ⊆ Out C10xSD16804(C10xSD16):17C2320,1579
(C10xSD16):18C2 = Dic5:5SD16φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):18C2320,790
(C10xSD16):19C2 = (C5xD4).D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):19C2320,792
(C10xSD16):20C2 = D10:6SD16φ: C2/C1C2 ⊆ Out C10xSD1680(C10xSD16):20C2320,796
(C10xSD16):21C2 = D10:8SD16φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):21C2320,797
(C10xSD16):22C2 = D20:7D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):22C2320,799
(C10xSD16):23C2 = Dic10.16D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):23C2320,800
(C10xSD16):24C2 = C5xQ8:D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):24C2320,949
(C10xSD16):25C2 = C5xD4:D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):25C2320,950
(C10xSD16):26C2 = C5xC22:SD16φ: C2/C1C2 ⊆ Out C10xSD1680(C10xSD16):26C2320,951
(C10xSD16):27C2 = C5xD4.7D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):27C2320,953
(C10xSD16):28C2 = C5xC4:SD16φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):28C2320,961
(C10xSD16):29C2 = C5xD4.2D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):29C2320,964
(C10xSD16):30C2 = C5xC8:8D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):30C2320,966
(C10xSD16):31C2 = C5xC8:5D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):31C2320,993
(C10xSD16):32C2 = C5xC8.12D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16):32C2320,996
(C10xSD16):33C2 = C10xC4oD8φ: trivial image160(C10xSD16):33C2320,1574

Non-split extensions G=N.Q with N=C10xSD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xSD16).1C2 = SD16:Dic5φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).1C2320,791
(C10xSD16).2C2 = C40.31D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).2C2320,794
(C10xSD16).3C2 = SD16xDic5φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).3C2320,788
(C10xSD16).4C2 = C5xSD16:C4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).4C2320,941
(C10xSD16).5C2 = C5xC8.2D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).5C2320,998
(C10xSD16).6C2 = Dic5:3SD16φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).6C2320,789
(C10xSD16).7C2 = (C5xQ8).D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).7C2320,793
(C10xSD16).8C2 = C5xD4.D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).8C2320,962
(C10xSD16).9C2 = C5xQ8.D4φ: C2/C1C2 ⊆ Out C10xSD16160(C10xSD16).9C2320,965
(C10xSD16).10C2 = SD16xC20φ: trivial image160(C10xSD16).10C2320,939

׿
x
:
Z
F
o
wr
Q
<