Extensions 1→N→G→Q→1 with N=C7xD4 and Q=S3

Direct product G=NxQ with N=C7xD4 and Q=S3
dρLabelID
S3xC7xD4844S3xC7xD4336,188

Semidirect products G=N:Q with N=C7xD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C7xD4):1S3 = D4:D21φ: S3/C3C2 ⊆ Out C7xD41684+(C7xD4):1S3336,101
(C7xD4):2S3 = D4xD21φ: S3/C3C2 ⊆ Out C7xD4844+(C7xD4):2S3336,198
(C7xD4):3S3 = D4:2D21φ: S3/C3C2 ⊆ Out C7xD41684-(C7xD4):3S3336,199
(C7xD4):4S3 = C7xD4:S3φ: S3/C3C2 ⊆ Out C7xD41684(C7xD4):4S3336,85
(C7xD4):5S3 = C7xD4:2S3φ: trivial image1684(C7xD4):5S3336,189

Non-split extensions G=N.Q with N=C7xD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C7xD4).1S3 = D4.D21φ: S3/C3C2 ⊆ Out C7xD41684-(C7xD4).1S3336,102
(C7xD4).2S3 = C7xD4.S3φ: S3/C3C2 ⊆ Out C7xD41684(C7xD4).2S3336,86

׿
x
:
Z
F
o
wr
Q
<