Extensions 1→N→G→Q→1 with N=C56 and Q=S3

Direct product G=NxQ with N=C56 and Q=S3
dρLabelID
S3xC561682S3xC56336,74

Semidirect products G=N:Q with N=C56 and Q=S3
extensionφ:Q→Aut NdρLabelID
C56:1S3 = D168φ: S3/C3C2 ⊆ Aut C561682+C56:1S3336,93
C56:2S3 = C8:D21φ: S3/C3C2 ⊆ Aut C561682C56:2S3336,92
C56:3S3 = C8xD21φ: S3/C3C2 ⊆ Aut C561682C56:3S3336,90
C56:4S3 = C56:S3φ: S3/C3C2 ⊆ Aut C561682C56:4S3336,91
C56:5S3 = C7xD24φ: S3/C3C2 ⊆ Aut C561682C56:5S3336,77
C56:6S3 = C7xC24:C2φ: S3/C3C2 ⊆ Aut C561682C56:6S3336,76
C56:7S3 = C7xC8:S3φ: S3/C3C2 ⊆ Aut C561682C56:7S3336,75

Non-split extensions G=N.Q with N=C56 and Q=S3
extensionφ:Q→Aut NdρLabelID
C56.1S3 = Dic84φ: S3/C3C2 ⊆ Aut C563362-C56.1S3336,94
C56.2S3 = C21:C16φ: S3/C3C2 ⊆ Aut C563362C56.2S3336,5
C56.3S3 = C7xDic12φ: S3/C3C2 ⊆ Aut C563362C56.3S3336,78
C56.4S3 = C7xC3:C16central extension (φ=1)3362C56.4S3336,3

׿
x
:
Z
F
o
wr
Q
<