Extensions 1→N→G→Q→1 with N=C7xDic6 and Q=C2

Direct product G=NxQ with N=C7xDic6 and Q=C2
dρLabelID
C14xDic6336C14xDic6336,184

Semidirect products G=N:Q with N=C7xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7xDic6):1C2 = Dic6:D7φ: C2/C1C2 ⊆ Out C7xDic61684+(C7xDic6):1C2336,37
(C7xDic6):2C2 = D7xDic6φ: C2/C1C2 ⊆ Out C7xDic61684-(C7xDic6):2C2336,137
(C7xDic6):3C2 = D14.D6φ: C2/C1C2 ⊆ Out C7xDic61684+(C7xDic6):3C2336,146
(C7xDic6):4C2 = C28.D6φ: C2/C1C2 ⊆ Out C7xDic61684(C7xDic6):4C2336,32
(C7xDic6):5C2 = D28:S3φ: C2/C1C2 ⊆ Out C7xDic61684(C7xDic6):5C2336,139
(C7xDic6):6C2 = D21:Q8φ: C2/C1C2 ⊆ Out C7xDic61684(C7xDic6):6C2336,143
(C7xDic6):7C2 = C7xC24:C2φ: C2/C1C2 ⊆ Out C7xDic61682(C7xDic6):7C2336,76
(C7xDic6):8C2 = C7xD4.S3φ: C2/C1C2 ⊆ Out C7xDic61684(C7xDic6):8C2336,86
(C7xDic6):9C2 = C7xD4:2S3φ: C2/C1C2 ⊆ Out C7xDic61684(C7xDic6):9C2336,189
(C7xDic6):10C2 = S3xC7xQ8φ: C2/C1C2 ⊆ Out C7xDic61684(C7xDic6):10C2336,190
(C7xDic6):11C2 = C7xC4oD12φ: trivial image1682(C7xDic6):11C2336,187

Non-split extensions G=N.Q with N=C7xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7xDic6).1C2 = C7:Dic12φ: C2/C1C2 ⊆ Out C7xDic63364-(C7xDic6).1C2336,40
(C7xDic6).2C2 = C21:Q16φ: C2/C1C2 ⊆ Out C7xDic63364(C7xDic6).2C2336,38
(C7xDic6).3C2 = C7xDic12φ: C2/C1C2 ⊆ Out C7xDic63362(C7xDic6).3C2336,78
(C7xDic6).4C2 = C7xC3:Q16φ: C2/C1C2 ⊆ Out C7xDic63364(C7xDic6).4C2336,88

׿
x
:
Z
F
o
wr
Q
<