Extensions 1→N→G→Q→1 with N=C3 and Q=C3xC3:Dic3

Direct product G=NxQ with N=C3 and Q=C3xC3:Dic3
dρLabelID
C32xC3:Dic336C3^2xC3:Dic3324,156

Semidirect products G=N:Q with N=C3 and Q=C3xC3:Dic3
extensionφ:Q→Aut NdρLabelID
C3:(C3xC3:Dic3) = C3xC33:5C4φ: C3xC3:Dic3/C32xC6C2 ⊆ Aut C3108C3:(C3xC3:Dic3)324,157

Non-split extensions G=N.Q with N=C3 and Q=C3xC3:Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(C3xC3:Dic3) = C3xC9:Dic3φ: C3xC3:Dic3/C32xC6C2 ⊆ Aut C3108C3.1(C3xC3:Dic3)324,96
C3.2(C3xC3:Dic3) = C33:4C12φ: C3xC3:Dic3/C32xC6C2 ⊆ Aut C3108C3.2(C3xC3:Dic3)324,98
C3.3(C3xC3:Dic3) = C33.Dic3φ: C3xC3:Dic3/C32xC6C2 ⊆ Aut C3108C3.3(C3xC3:Dic3)324,100
C3.4(C3xC3:Dic3) = He3.4Dic3φ: C3xC3:Dic3/C32xC6C2 ⊆ Aut C31086-C3.4(C3xC3:Dic3)324,101
C3.5(C3xC3:Dic3) = C9xC3:Dic3central extension (φ=1)108C3.5(C3xC3:Dic3)324,97
C3.6(C3xC3:Dic3) = C3xHe3:3C4central stem extension (φ=1)108C3.6(C3xC3:Dic3)324,99
C3.7(C3xC3:Dic3) = He3.5C12central stem extension (φ=1)1083C3.7(C3xC3:Dic3)324,102

׿
x
:
Z
F
o
wr
Q
<