Extensions 1→N→G→Q→1 with N=Dic3 and Q=C2xC14

Direct product G=NxQ with N=Dic3 and Q=C2xC14
dρLabelID
Dic3xC2xC14336Dic3xC2xC14336,192

Semidirect products G=N:Q with N=Dic3 and Q=C2xC14
extensionφ:Q→Out NdρLabelID
Dic3:1(C2xC14) = S3xC7xD4φ: C2xC14/C14C2 ⊆ Out Dic3844Dic3:1(C2xC14)336,188
Dic3:2(C2xC14) = C14xC3:D4φ: C2xC14/C14C2 ⊆ Out Dic3168Dic3:2(C2xC14)336,193
Dic3:3(C2xC14) = S3xC2xC28φ: trivial image168Dic3:3(C2xC14)336,185

Non-split extensions G=N.Q with N=Dic3 and Q=C2xC14
extensionφ:Q→Out NdρLabelID
Dic3.1(C2xC14) = C14xDic6φ: C2xC14/C14C2 ⊆ Out Dic3336Dic3.1(C2xC14)336,184
Dic3.2(C2xC14) = C7xC4oD12φ: C2xC14/C14C2 ⊆ Out Dic31682Dic3.2(C2xC14)336,187
Dic3.3(C2xC14) = C7xD4:2S3φ: C2xC14/C14C2 ⊆ Out Dic31684Dic3.3(C2xC14)336,189
Dic3.4(C2xC14) = S3xC7xQ8φ: C2xC14/C14C2 ⊆ Out Dic31684Dic3.4(C2xC14)336,190
Dic3.5(C2xC14) = C7xQ8:3S3φ: trivial image1684Dic3.5(C2xC14)336,191

׿
x
:
Z
F
o
wr
Q
<