Extensions 1→N→G→Q→1 with N=C2xC14 and Q=Dic3

Direct product G=NxQ with N=C2xC14 and Q=Dic3
dρLabelID
Dic3xC2xC14336Dic3xC2xC14336,192

Semidirect products G=N:Q with N=C2xC14 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2xC14):1Dic3 = C7xA4:C4φ: Dic3/C2S3 ⊆ Aut C2xC14843(C2xC14):1Dic3336,117
(C2xC14):2Dic3 = A4:Dic7φ: Dic3/C2S3 ⊆ Aut C2xC14846-(C2xC14):2Dic3336,120
(C2xC14):3Dic3 = C7xC6.D4φ: Dic3/C6C2 ⊆ Aut C2xC14168(C2xC14):3Dic3336,89
(C2xC14):4Dic3 = C42.38D4φ: Dic3/C6C2 ⊆ Aut C2xC14168(C2xC14):4Dic3336,105
(C2xC14):5Dic3 = C22xDic21φ: Dic3/C6C2 ⊆ Aut C2xC14336(C2xC14):5Dic3336,202

Non-split extensions G=N.Q with N=C2xC14 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2xC14).1Dic3 = C7xC4.Dic3φ: Dic3/C6C2 ⊆ Aut C2xC141682(C2xC14).1Dic3336,80
(C2xC14).2Dic3 = C2xC21:C8φ: Dic3/C6C2 ⊆ Aut C2xC14336(C2xC14).2Dic3336,95
(C2xC14).3Dic3 = C84.C4φ: Dic3/C6C2 ⊆ Aut C2xC141682(C2xC14).3Dic3336,96
(C2xC14).4Dic3 = C14xC3:C8central extension (φ=1)336(C2xC14).4Dic3336,79

׿
x
:
Z
F
o
wr
Q
<