Extensions 1→N→G→Q→1 with N=C84 and Q=C4

Direct product G=NxQ with N=C84 and Q=C4
dρLabelID
C4xC84336C4xC84336,106

Semidirect products G=N:Q with N=C84 and Q=C4
extensionφ:Q→Aut NdρLabelID
C84:1C4 = C84:C4φ: C4/C2C2 ⊆ Aut C84336C84:1C4336,99
C84:2C4 = C4xDic21φ: C4/C2C2 ⊆ Aut C84336C84:2C4336,97
C84:3C4 = C3xC4:Dic7φ: C4/C2C2 ⊆ Aut C84336C84:3C4336,67
C84:4C4 = C12xDic7φ: C4/C2C2 ⊆ Aut C84336C84:4C4336,65
C84:5C4 = C7xC4:Dic3φ: C4/C2C2 ⊆ Aut C84336C84:5C4336,83
C84:6C4 = Dic3xC28φ: C4/C2C2 ⊆ Aut C84336C84:6C4336,81
C84:7C4 = C4:C4xC21φ: C4/C2C2 ⊆ Aut C84336C84:7C4336,108

Non-split extensions G=N.Q with N=C84 and Q=C4
extensionφ:Q→Aut NdρLabelID
C84.1C4 = C84.C4φ: C4/C2C2 ⊆ Aut C841682C84.1C4336,96
C84.2C4 = C21:C16φ: C4/C2C2 ⊆ Aut C843362C84.2C4336,5
C84.3C4 = C2xC21:C8φ: C4/C2C2 ⊆ Aut C84336C84.3C4336,95
C84.4C4 = C3xC4.Dic7φ: C4/C2C2 ⊆ Aut C841682C84.4C4336,64
C84.5C4 = C3xC7:C16φ: C4/C2C2 ⊆ Aut C843362C84.5C4336,4
C84.6C4 = C6xC7:C8φ: C4/C2C2 ⊆ Aut C84336C84.6C4336,63
C84.7C4 = C7xC4.Dic3φ: C4/C2C2 ⊆ Aut C841682C84.7C4336,80
C84.8C4 = C7xC3:C16φ: C4/C2C2 ⊆ Aut C843362C84.8C4336,3
C84.9C4 = C14xC3:C8φ: C4/C2C2 ⊆ Aut C84336C84.9C4336,79
C84.10C4 = M4(2)xC21φ: C4/C2C2 ⊆ Aut C841682C84.10C4336,110

׿
x
:
Z
F
o
wr
Q
<