Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=D7

Direct product G=NxQ with N=C2xDic3 and Q=D7
dρLabelID
C2xDic3xD7168C2xDic3xD7336,151

Semidirect products G=N:Q with N=C2xDic3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2xDic3):1D7 = D14:Dic3φ: D7/C7C2 ⊆ Out C2xDic3168(C2xDic3):1D7336,42
(C2xDic3):2D7 = D42:C4φ: D7/C7C2 ⊆ Out C2xDic3168(C2xDic3):2D7336,44
(C2xDic3):3D7 = Dic7.D6φ: D7/C7C2 ⊆ Out C2xDic31684(C2xDic3):3D7336,152
(C2xDic3):4D7 = C2xC3:D28φ: D7/C7C2 ⊆ Out C2xDic3168(C2xDic3):4D7336,158
(C2xDic3):5D7 = C2xD21:C4φ: trivial image168(C2xDic3):5D7336,156

Non-split extensions G=N.Q with N=C2xDic3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2xDic3).1D7 = C42.Q8φ: D7/C7C2 ⊆ Out C2xDic3336(C2xDic3).1D7336,45
(C2xDic3).2D7 = Dic21:C4φ: D7/C7C2 ⊆ Out C2xDic3336(C2xDic3).2D7336,46
(C2xDic3).3D7 = C14.Dic6φ: D7/C7C2 ⊆ Out C2xDic3336(C2xDic3).3D7336,47
(C2xDic3).4D7 = C2xC21:Q8φ: D7/C7C2 ⊆ Out C2xDic3336(C2xDic3).4D7336,160
(C2xDic3).5D7 = Dic3xDic7φ: trivial image336(C2xDic3).5D7336,41

׿
x
:
Z
F
o
wr
Q
<